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Nonlinear response of the trap model in the aging regime: Exact results in the strong-disorder limit

Cécile Monthus
Service de Physique The´orique, Unitéde Recherche associe´e au CNRS, DSM/CEA Saclay, 91191 Gif-sur-Yvette, France

~Received 17 June 2003; published 10 February 2004!

We study the dynamics in the one-dimensional disordered trap model with a broad distribution of trapping
timesp(t);1/t11m, when an external force is applied from the very beginning att50, or only after a waiting
time tw , in the linear as well as in the nonlinear response regime. Using a real-space renormalization procedure
that becomes exact in the limit of strong disorderm→0, we obtain explicit results for many observables, such
as the diffusion front, the mean position, the thermal width, the localization parameters and the two-particle
correlation function. In particular, the scaling functions for these observables give access to the complete
interpolation between the unbiased case and the directed case. Finally, we discuss in detail the various regimes
that exist for the average position in terms of the two times and the external field.
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I. INTRODUCTION

Trap models provide a simple phenomenological mec
nism for aging@1–3#. Their aging properties have thus be
much studied, either in the mean-field version@4–7#, where
‘‘usual aging’’ occurs, or in the one-dimensional versio
@8,9#, where both aging and subaging behaviors appea
different correlation functions. The mathematicians have a
been interested by these trap models@10# with special atten-
tion to the casesd51 @11,12# and d52 @13#. The one-
dimensional version is moreover interesting on its own, si
it appears in various physical applications concerning
instance transport properties in disordered chains@14,15# or
the dynamics of denaturation bubbles in random DNA
quences@16#.

The study of the response to an external field and its
lation with the thermal fluctuations has been for some ye
a central question in the description of the aging dynamic
glassy systems@17,18#. It is thus natural to consider the tra
models from this point of view. The studies on the violati
of the fluctuation-dissipation relation in mean-field trap mo
els have shown that the results depend on the observ
@19#, and on the choice of functional form of the hoppin
rates@20,21#. For trap models on a hypercubic lattice, the
are no such ambiguities in the choice of observables
external fields, since the natural observable is the posit
one is interested into the response of the position to an
ternal bias, and in the thermal fluctuations of the positi
Recently, the response in the one-dimensional trap mo
was studied via scaling arguments and numerical simulat
in Ref. @22#, where various regimes were found depend
on the relative values of the two times considered (tw ,tw
1t) and the external applied fieldf, the main results being
that in the linear response regime, the fluctuation-dissipa
relation~or Einstein’s relation! is still valid in the aging sec-
tor, whereas the response always become non-linear at
times. We have shown in Ref.@23# that these two respons
properties could be understood as consequences of a ‘‘
linear Fluctuation Theorem’’ that originates from a very sp
cial dynamical property of the trap model. In this paper,
consider again the response properties of the trap model
with a complementary point of view: we use a real-spa
1063-651X/2004/69~2!/026103~20!/$22.50 69 0261
-

in
o

e
r

-

-
rs
f

-
ble

d
n:
x-
.
el
ns
g

n

ng

n-
-

ut
e

renormalization group~RSRG! procedure to derive variou
explicit exact results in the limit of high disorder.

The RSRG methods, that have appeared in the field
disordered quantum spin chains@24,25#, have then been very
powerful to study the Sinai model@26#, as well as reaction-
diffusion processes in a Brownian potential@27#. In particu-
lar, since the out-of-equilibrium dynamics of the rando
field Ising model~RFIM! can be described as a reactio
diffusion process in a Brownian potential for the doma
walls, the RSRG method has been used@28# to study the
response of the RFIM to an applied external magnetic fie
The RSRG approach is also very appropriate to study o
dimensional trap models with a broad distribution of tra
ping times p(t);1/t11m in the limit of high disorderm
→0, as explained in details in Ref.@29# for thedirectedtrap
model, and in Ref.@9# for the symmetrictrap model~i.e., in
the absence of an external bias!: the RSRG method is able t
reproduce the exact exponents of the whole aging phas
,m,1 and moreover allows one to compute exact scal
functions for all observables in a systematic perturbation
pansion inm @9,29#. In contrast with other usual methods fo
disordered systems, the disorder average is not performe
the beginning but at the very end: the RSRG procedure
defined sample by sample, all observables are then evalu
in terms of the relevant properties of a given sample, and
be then averaged with the appropriate measure over
samples. The RSRG approach thus provides a very clea
sight into the important dynamical processes.

In this paper, we generalize the RSRG approach descr
in Ref. @9# for the unbiasedtrap model to include the influ-
ence of an external bias, and we obtain exact results
various observables in the high disorder limitm→0. The
paper is organized as follows. In Sec. II, we describe the t
model in an external force fieldf. In Sec. III, we explain the
real-space renormalization procedure in the presence o
external field. In Sec. IV, we describe the effective dynam
when the external field is applied from the initial timet
50. In Sec. V, we give explicit results for various one-tim
observables, such as the diffusion front~78! the mean posi-
tion ~84,85!, or the thermal width~91,92!. In Sec. VI, we
discuss the effective dynamics when the external field is
plied only after a waiting timetw . In Sec. VII, we compute
©2004 The American Physical Society03-1
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the corresponding two-time observables, such as the di
bution of the relative displacement~130! and the mean posi
tion ~133!. In Sec. VIII, we summarize our results for th
disordered averaged mean position in the various regi
defined by the two times (tw ,t) and the external fieldf. In
Sec. IX, we discuss the rare events that are responsible
the response, in the time sector where the effective dynam
gives no contribution. Finally, in Sec. X, we compare t
response and the thermal fluctuations in a given sample
discuss the validity of the fluctuation-dissipation relatio
The conclusions are given in Sec. XI, and the Appendix c
tains more technical details.

II. MODELS AND NOTATIONS

A. Master equation in a sample

To study the trap model in an external force fieldf, we
consider the following Master Equation@15,23#

dPt
( f )~x!

dt
5Pt

( f )~x11!W$x11→x%
( f ) 1Pt

( f )~x21!W$x21→x%
( f )

2Pt
( f )~x!@W$x→x11%

( f ) 1W$x→x21%
( f ) # ~1!

with the initial conditionPt50
( f ) (x)5dx,0 . The hopping rates

W$x→x61%
( f ) 5e2bEx6b f /2 ~2!

satisfy the detailed balance condition

W$x→x11%

W$x11→x%
5eb(Ux2Ux11), ~3!

where the total energy

Ux52Ex2 f x ~4!

contains both the random energy (2Ex) of the trapx and the
potential energy (2 f x) linear in the positionx induced by
the external applied fieldf.

B. Law for the disorder

The trap energies$Ex% are quenched random variable
distributed exponentially@2#

r~E!5u~E.0!
1

Tg
e2E/Tg ~5!

This corresponds for the mean trapping timet5ebE to the
algebraic law

q~t!5u~t.1!
m

t11m
~6!

with the temperature-dependent exponentm5T/Tg . At low
temperaturesm,1, the mean trapping time*dttq(t) is in-
finite and this directly leads to aging effects.
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C. Link with the ‘‘trap model with asymmetry’’

To make the link with the ‘‘trap model with asymmetry h
studied in @22#, we note that in the new timet̃
5@2 coshb(f/2)#t, the Master equation~1! becomes

dPt̃
( f )

~x!

d t̃
5

q2~ f !

tx11
Pt̃

( f )
~x11!1

q1~ f !

tx21
Pt̃

( f )
~x21!

2
1

tx
Pt̃

( f )
~x!, ~7!

where

q6~ f !5
e6~b f /2!

e1b ~ f /2!1e2b ~ f /2!
5

16h~ f !

2
~8!

are the probabilities to jump to the right and to the left wh
escaping a trap, with the normalizationq11q251. The
asymmetry

h~ f !5q12q25tanhb
f

2
~9!

varies betweenh( f 50)50 for the unbiased case andh( f
→`)→1 for the fully directed case.

As soon ash.0, the random walk is expected to becom
asymptotically directed on large scales. In this article,
will be interested into the case where the crossover towa
the directed regime happens on large length scales, i.e.
local asymmetry is very smallh!1 or equivalentlyb f !1.
In this regime also considered in Ref.@22#, the relation be-
tween the force and the asymmetry is at lowest order sim
linear

h~ f !5
b f

2
1O„~b f !3

… ~10!

and thus the results of the present paper can be straigh
wardly compared with Ref.@22#.

D. Entropy and generalized free energy

As in similar models@30–32#, the Shannon entropy

S~ t !52(
x

Pt~x!ln Pt~x! ~11!

and the energyU(t)5(xPt(x)Ux ~4! allows us to define a
generalized free energy

F~ t !5U~ t !2TS~ t !5(
x

Pt~x!@Ux1Tln Pt~x!#. ~12!

The detailed balance condition implies that it is a nonincre
ing functiondF(t)/dt<0 The equality with zero is possibl
only if all currents exactly vanish, corresponding to equili
rium. Here, since we consider the infinite line, the equil
rium cannot be reached and the free energy will decre
with no bounds.
3-2
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III. REAL-SPACE RENORMALIZATION PROCEDURE IN
THE PRESENCE OF A FIELD

We have already presented the real-space renormaliza
procedure for theunbiasedtrap model in Ref.@9#. Here we
wish to generalize this approach to the presence of an e
nal biasf .0.

A. Notion of renormalized landscape at a scaleR

The basic idea of the real-space renormalization pro
dure@9,26,29# is that the dynamics at large time is dominat
by the statistical properties of the large trapping times. T
renormalized landscape at scaleR is defined as follows: all
traps with trapping timetx,R are decimated and replace
by a ‘‘flat landscape,’’ whereas all traps with waiting tim
tx.R remain unchanged. At large scaleR, the distribution of
the distancel between two traps of the renormalized lan
scape at scaleR takes the scaling form

PR~ l !.
1

Rm
PS l5

l

RmD , ~13!

where the scaling distribution is simply exponentialP(l)
5e2l

The distribution of the trapping times of the traps in t
renormalized landscape at scaleR is simply

qR~t!5u~t.R!
m

t S R

t D m

. ~14!

To relate the renormalization scaleR to the timet, we have to
study the time needed to escape from a renormalized tra

B. ‘‘Escape time’’ from a renormalized trap to another
renormalized trap

We now study the escape timeT0 from a trapt0 existing
in the renormalized landscape at scaleR in the presence of a
field f .0. This trap is surrounded by two renormalized tra
that are at distancesl 1 and l 2 on each side~see Fig. 1!.

FIG. 1. Definition of the escape time from a trap in the ren
malized landscape: the trap of escape timet0 existing in the renor-
malized landscape at scaleR is surrounded by two renormalize
traps that are at distancesl 1 and l 2 on each side. The escape tim
T0 is the mean time needed to reach eithert1 or t2 when starting
at t0.
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Whenever the particle escapes from the trapt0, it escapes to
the right with probabilityq15@11h( f )#/2 and to the left
with probability q25@12h( f )#/2 ~8!.

If it escapes on the right, it will succeed to reach the tr
t1 with probability ~A10!

pe
1~ f ,l 1!5

12e2b f

12e2b f l 1
, ~15!

which varies betweenpe
1( l , f→0)51/l 1 for the unbiased

case andpe
1( l , f→`)51 for the directed case.

If it escapes on the left, it will succeed to reach the tr
t2 with probability ~A13!

pe
2~ f ,l 2!5

~12e2b f !e2b f ( l 221)

12e2b f l 2
, ~16!

which varies betweenpe
2( l 2 , f→0)51/l 2 for the unbiased

case andpe
2( l 2 , f→`)50 for the directed case.

Otherwise, it will be reabsorbed again by the trapt0. So
the total probability to escape when exiting fromt0 reads

pe~ f ,l 1 ,l 2!5
e1b ~ f /2!pe

1~ l 1 , f !1e2b ~ f /2!pe
2~ l 2 , f !

e1b ~ f /2!1e2b ~ f /2!
.

~17!

1. Number of sojourns in a renormalized trap before escape to
neighboring renormalized trap

As a consequence, the probabilityER(n) to need (11n)
successive sojourns in the trapt0 before the particle suc
ceeds to escape either to the trapt2 or to the trapt1 reads

ER~n!5@12pe~ f ,l 1 ,l 2!#npe~ f ,l 1 ,l 2!. ~18!

For large R, since we havel 65Rml6 ~13! we obtain
using Eqs.~A11! and ~A14! the scaling form for the prob-
ability of escape~17!

pe~ f ,l 1 ,l 2!.
1

Rm
fS F[b f Rm;l15

l 1

Rm
,l25

l 2

RmD
~19!

with the scaling function

f~F;l1,l2!5
F~12e2F(l11l2)!

2~12e2Fl1
!~12e2Fl2

!
~20!

The expansion nearF→0 gives the first correction with re
spect to the symmetric case studied in Ref.@9#

f~F;l1,l2!5
1

2 F 1

l1
1

1

l2G1
l11l2

24
F2

2
~l1!31~l2!3

1440
F41O~F6!, ~21!

whereas in the other limitF→`, we have

-

3-3
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f~F;l1,l2! .
F→`

F

2
~11e2Fl1

1e2Fl2
1••• !. ~22!

As a consequence, at large scaleR, the numbern of re-
turns is distributed exponentially

ER~n!.
1

^n&~R,F !
e2[n/^n&(R,F)] ~23!

where the mean number of returns

^n&~R,F !5
Rm

f~F;l1,l2!
~24!

varies between

^n&~R,F→0!5Rm
2l1l2

l11l2
~25!

and

^n&~R,F→`!.Rm
2

F
5

2

b f
. ~26!

2. Total time spent inside a renormalized trap before escape to
neighboring renormalized trap

Let us now consider the probability distributionPin(t in)
of the total timet in spent inside the trapt0 before its escape
It can be decomposed into the numbern of sojourns, wheren
is distributed with~18!

t in5 (
n51

11n

tn , ~27!

wheretn is the time spent during the sojourni in the trapt0,
so it is distributed with the exponential distribution wi
mean timet0. Actually, sincen is large in the largeR limit,
we have the central-limit theorem

t in .
n→`

n^tn&5nt0 . ~28!

Since the numbern is distributed with exponentially~23!, we
finally obtain thatt in is also exponentially distributed

P̂in~ t in!.R→`

1

T0
e2(t in /T0) ~29!

with the characteristic time

T05t0^n&~R,F !. ~30!

Since the smallest trapping times existing in the renorm
ized landscape at scaleR is t05R, the time spent inside the
trap t0 before it succeeds to escape scales as

t in~R,F ! ;
R→`

R^n&~R,F !5
R11m

f~F;l1,l2!
. ~31!
02610
l-

3. Total time spent during the unsuccessful excursions before
the escape

Among then unsuccessful excursions, there arem excur-
sions on the left and (n2m) excursions on the left, wherem
is distributed with the binomial distribution 22nCn

m . Sincen
andm are large, we again have a central-limit theorem

tout5 (
n51

m

tn
21 (

j 51

n2m

t j
1.muus

2 ~ f ,l 2!1~n2m!uus
1 ~ f ,l 1!,

~32!

whereuus
6 ( f ,l ) represents the mean time needed to return

0 when starting at (61) without touching the point (6 l ) in
a flat landscape. Using the asymptotic behavior@~A17! and
~A21!#

uus
1 ~ f ,l ! .

l→`

lQ~u5b f l ! ~33!

with the scaling functionQ given in Eq. ~A18!, the ratio
betweentout and t in ~28! scales as

tout

t in
~R,F !.

uus
2 ~ f ,l 2!1uus

1 ~ f ,l 1!

2t0

;Rm21@Q~Fl1!1Q~Fl2!#, ~34!

which varies between~A19!

tout

t in
~R,F→0!;Rm21 ~35!

and

tout

t in
~R,F→`!;Rm21

1

F
5

1

Rb f
. ~36!

We may thus neglecttout with respect tot in at large scaleR.

4. Time spent during the successful excursion to escape

We finally consider the diffusion timetdi f f
6 of the success-

ful escape to the neighboring renormalized trap (l 1) when
starting at x51 without visiting x50. The mean time
needed to reachx5 l 1 when starting atx51 for a random
walk conditioned not to visitx50 takes the scaling form
~A22!

tdi f f
1 ~ f ,l 1!. l 1

2 D~u5b f l 1!, ~37!

where the scaling functionD(u) is given in Eq.~A23!. Using
also Eq.~A26!, we obtain the scaling

tdi f f

t in
~R,F !;Rm21D~Fl!, ~38!

which is the same as Eq.~34! and thustdi f f is again negli-
gible with respect tot in ~31!.
3-4
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5. Conclusion

So we obtain that the total time

tesc5t in1tout1tdi f f ~39!

needed to escape is actually simply given by the timet in
spent inside the trapt0. So the distribution oftesc is given by
the exponential~29! with the escape timeT0.

In conclusion, a trap of the renormalized landscape
scaleR has a trapping timet distributed with Eq.~14!, but
has an escape time proportional tot

Te5t^n&~R,F !5t
Rm

f~F;l1,l2!
~40!

in terms of the two rescaled distancesl6 to the neighbors.

C. Distribution of escape times in the renormalized landscape

The distribution of the escape timeTe in the renormalized
landscape at scaleR is obtained by averaging overt,l6 :

QR~Te ; f !5E
R

1`

dt
m

t S R

t D mE
0

1`

dl1dl2e2l12l2
d

3S Te2
Rm

f~F;l1,l2!
t D . ~41!

It thus takes the scaling form

QR~Te ; f !5
1

R11m
QmS T̃5

Te

R11m
;F D , ~42!

where the scaling function

Qm~ T̃;F !5
m

~ T̃!11mE0

1`

dl1dl2e2l12l2

3@f~F;l1,l2!#2mu

3Ff~F;l1,l2!.
1

T̃
G ~43!

presents the asymptotic behavior

Qm~ T̃;F ! .
T̃→`

m

~ T̃!11m
cm~F ! ~44!

with the prefactor

cm~F !5E
0

1`

dl1dl2e2l12l2
@f~F;l1,l2!#2m

512mE
0

1`

dl1dl2e2l12l2
ln@f~F;l1,l2!#

1O~m2!. ~45!
02610
t

For small m, the probability distributionQm(T̃,F) is
dominated by its long tail, and we may approximate it by

Qm~ T̃!.u„T̃.T̃m~F !…
m

T̃
S T̃m~F !

T̃
D m

. ~46!

The cutoff T̃m(F) chosen to preserve the normalization
determined by the coefficient in the long tail part~44! and
~45!

T̃m~F !5@cm~F !#1/m5eS(F)1O~m!, ~47!

where the functionS(F) obtained from Eq.~45! can be com-
puted with the explicit expression~20!

S~F ![2E
0

1`

dl1dl2e2l12l2
ln@f~F;l1,l2!# ~48!

52 ln F1 ln 22gE2cS 11
1

F D2
1

F
c8S 11

1

F D
~49!

in terms of c(z)5G8(z)/G(z), and the Euler constantgE
52c8(1).

For the unrescaled probability distribution~42!, this cor-
responds to the cutoff

T0~R, f !5R11meS(F) ~50!

D. Choice of the renormalization scaleR as a function of time

The renormalization scaleR has to be chosen as a fun
tion of time by the requirement that this effective cuto
T0(R, f ) is exactlyt, meaning that at timet, only traps with
escape timesTe.t have been kept, whereas all traps wi
escape timesTe,t have been removed and replaced by a
landscape. So given a renormalization scaleR and an exter-
nal field f, the corresponding timet of the dynamics reads

t5t~R, f ![R11meS(F5b f Rm). ~51!

The renormalization scaleR(t, f ) as a function of timet and
field f is thus defined by the implicit equation

t5R11m~ t, f !eS„b f Rm(t, f )…. ~52!

At short times, assumingF5b f Rm(t)!1, we may use
the expansion

S~F !5 ln 2212gE2 1
12 F21O~F4! ~53!

to solve Eq.~52!, to obtain the first correction with respect t
the unbiased case

R~ t, f !5S t

T0
D 1/~11m!F11

~b f !2

12~11m! S t

T0
D 2m/~11m!

•••G ,
~54!

whereT̃05eS(0)52e212gE. This solution is thus valid for
3-5
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t!tm~ f ![S 1

b f D ~11m!/m

, ~55!

where the time scaletm( f ) was already shown to play a
important role via other approaches@22,23#.

At long times, assumingF5b f Rm(t)@1, we may use
the asymptotic behavior

S~F !52 ln
F

2
2

p2

3F
1OS 1

F2D ~56!

to solve Eq.~52! which leads to

R~ t, f !5
b f

2
tF11

p22m

3~b f !11mtm
1•••G , ~57!

which is valid for t@tm( f ) ~55!.
As a consequence, the characteristic length scale co

sponding to the mean distance between renormalized tra
scaleR(t) ~13!

j~ t, f !5Rm~ t, f ! ~58!

behaves as in the unbiased case at short times@33,34#

j~ t, f ! .
t!tm( f )

tm/(11m)@11O~m!# ~59!

and as

j~ t, f ! .
t@tm( f )

~b f t !m@11O~m!# ~60!

at long times.

IV. EFFECTIVE DYNAMICS IN THE LIMIT µ\0

A. Probabilities to escape on the right or on the left in the
renormalized landscape

We are now interested into the relative probability to e
cape on the right rather than to the left which reads@~15! and
~17!# using Eqs.~A11! and ~A14!

w1~ f ,l 1 ,l 2![
e1b ~ f /2!pe

1~ f ,l 1!

pe~ f ,l 1 ,l 2!
.W1~F,l1,l2!

~61!

with the scaling function

W1~F,l1,l2!5
12e2Fl2

12e2F(l11l2)
. ~62!

The complementary probability to escape on the left rea

W2~F,l1,l2!5
e2Fl2

~12e2Fl1
!

12e2F(l11l2)
. ~63!

The expansion nearF→0 gives the first correction with
respect to the symmetric case@9#
02610
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W1~F,l1,l2!5
l2

l21l1
1F 1

l1
1

1

l2G F

2

1
l12l2

12 F 1

l1
1

1

l2GF21O~F3!,

~64!

whereas for largeF, the first corrections with respect to th
directed case are given by

W1~F,l1,l2! .
F→`

12e2Fl2
1e2F(l11l2)1••• .

~65!

B. Rules for the effective dynamics

We thus define the effective dynamics by the followin
rules:

The particle starting at the originO will be at timet either
in the first trapM 1 of the renormalized landscape at sca
R(t, f ) on its right or in the first trapM 2 of the renormalized
landscape on its left. The weights of the trapsM 1 andM 2

are given in terms of Eqs.~62! and ~63! by

p[ M2M1]~M 1u0!5W1~F,l1,l2!, ~66!

p[ M2M1]~M 2u0!5W2~F,l1,l2!. ~67!

We now verify that this effective dynamics presents so
important properties.

C. Consistency upon iteration

The rule for the effective dynamics is consistent up
iteration. Indeed, suppose there are three consecutive t
the trapM 2 is at a distancel 2 from the origin on the left, the
trap M 1 is at a distancel 1 from the origin on the right, and
the trapM 11 is at a distancel from the trapM 1 on the right.

Suppose that the trapM 1 is decimated before the trap
M 2 andM 11 . The new weights for the trapsM 2 andM 11

become

pM2
8 5p[ M2M1]~M 2u0!

1p[ M2M11]~M 2uM 1!p[ M2M1]~M 1u0!

5p[ M2M11]~M 2u0! ~68!

pM11
8 5p[ M2M11]~M 11uM 1!p[ M2M1]~M 1u0!

5
12e2Fl 2

12e2F( l 11 l 21 l )
5p[ M2M11]~M 11u0! ~69!

and thus the rules~67! for the occupancies of renormalize
traps are consistent upon decimation of traps in the renorm
ized landscape.
3-6
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D. Conservation of the mean position in any sample forfÄ0

As already emphasized in Refs.@22,23#, the trap model
has a very special property: when there is no external fi
f 50 the mean position is a conserved quantity in any giv
sample, as a simple consequence of the master equatio~1!
for any realization of the trapping times$tn%. Here in the
effective dynamics, the mean position vanishes indeed
each sample with the weights in zero fieldf 50 given by Eq.
~64!.

E. Nonlinear fluctuation theorem

The nonlinear fluctuation theorem obtained in Ref.@23#
says that, in any given sample of the trap model the diffus
front Pt

(1 f )(n) in the presence of the external field (1 f ) and
the diffusion front Pt

(2 f )(n) in the presence of (2 f ) are
related by the extremely simple property

Pt
(1 f )~n!

Pt
(2 f )~n!

5eb f n. ~70!

In the effective dynamics, this property is satisfied since
renormalization landscape at timet is the same for (1 f ) and
(2 f ), so the two possible positionsM 1 and M 2 are the
same, and the weights@~62! and ~63!# satisfy the properties

W1~2F,l1,l2!5e2Fl1W1~F,l1,l2!, ~71!

W2~2F,l1,l2!5eFl2W2~F,l1,l2!. ~72!

V. OBSERVABLES WHEN THE FIELD IS APPLIED FROM
THE BEGINNING tÐ0

A. Diffusion front in a given sample

In the effective dynamics, the diffusion front in a give
sample takes the scaling form

Pt
(0)~n; f !5

1

j~ t, f !
P (0)S X5

n

j~ t, f !
;F5b f j~ t, f ! D ,

~73!

where the characteristic length scalej(t, f ) has been defined
in Eqs. ~52! and ~58! from the renormalization landscap
and where the scaling function reads according to the ef
tive dynamics~67!

P (0)~X,F !5
e2Fl2

~12e2Fl1
!

12e2F(l11l2)
d~X1l2!

1
12e2Fl2

12e2F(l11l2)
d~X2l1! ~74!

in terms of the two rescaled distancesl6 between the origin
and the nearest renormalized traps. The joint distribution
the two rescaled distances is completely factorized

D~l1,l2!5u~l1!u~l2!e2l12l2
. ~75!
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We now compute the various observables that can be
tained from the sample-dependent diffusion front~74! and
the measure~75! over the samples.

B. Disorder averaged diffusion front

The averaged diffusion front takes the scaling form

Pt~n, f !5
1

j~ t, f !
gmS X5

n

j~ t, f !
,F5b f j~ t, f ! D , ~76!

where the scaling functiongm reads at lowest order inm
→0

g0~X,F !5e2uXu@u~X.0!1u~X,0!e2FuXu#

3E
0

1`

dle2l
12e2Fl

12e2F(uXu1l)
~77!

5e2uXu@u~X.0!1u~X,0!e2FuXu#

3 (
n50

1`
F

~11Fn!~11F1Fn!
e2nFuXu, ~78!

which interpolates between the diffusion fronts for the un
ased case@9# as F→0 and for the directed case@29# as F
→`. Here, as for other results below, we have given t
equivalent forms for the diffusion front: the first one with th
integral is more appropriate to study the smallF behavior,
whereas the second one with the infinite series is more su
for largeF.

The simple property

g0~2X,F !5e2FXg0~X,F ! ~79!

is actually expected to be valid for arbitrarym as a conse-
quence of a nonlinear fluctuation theorem, as discusse
Ref. @23#.

C. Disorder averaged mean position

The disorder average of the mean position takes the s
ing form

^x~ t, f !&[ (
x52`

1`

xPt~x, f !5j~ t, f !Xm„F5b f j~ t, f !…,

~80!

where the scaling functionXm reads at lowest order inm
→0

X0~F ![E
2`

1`

dXXg0~X,F !

5E
0

1`

dlle2l

Fl

2
coth

Fl

2
21

F

512
1

F
2

1

F3
c9S 11

1

F D . ~81!
3-7
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The series expansion for smallF reads

X0~F !5
F

2
2

F3

6
1

F5

6
1O~F7!, ~82!

whereas the asymptotic behavior for largeF reads

X0~F !512
1

F
1 (

n51

1`
2

~11Fn!3

512
1

F
1

2z~3!

F3
2

p4

15F4
1OS 1

F5D . ~83!

Using F5b f j(t, f ) and Eqs.~59! and ~60!, we finally
obtain the expansions

^x~ t, f !&5
b f

2 S t

T0
D m/~11m!F12

1

3
~b f !2S t

T0
D 2m/~11m!

1O„~b f tm/~11m!!4
…G ~84!

at short times, i.e., fort!tm( f ) ~55!, and

^x~ t, f !&5S b f

2 D m

tm2
1

b f
1OS 1

~~b f !21mtm)
D ~85!

for t@tm( f ). The leading terms are thus in agreement w
the scaling analysis presented in Ref.@22#.

D. Thermal width

The disorder averaged thermal width~74! presents the
scaling form

^Dx2~ t, f !&[ (
x52`

1`

x2Pt~x, f !2F (
x52`

1`

xPt~x, f !G2

5j2~ t, f !Dm„F5b f j~ t, f !…, ~86!

where the scaling function reads at lowest order inm

D0~F !5E
0

1`

dle2l
l2

4H F coth
Fl

2
2

Fl

2

sinh2
Fl

2

G
5

1

F
1

2

F4
c9S 11

1

F D1
1

F5
c-S 11

1

F D . ~87!

It is thus directly related to the scaling functionX0(F) gov-
erning the mean displacement~81! via the simple relation

D0~F !5F 1

F
1

d

dFGX0~F !. ~88!

Using the asymptotic behaviors for small and largeF
02610
D0~F !512
2

3
F21F41O~F6!, ~89!

D0~F !5
1

F
2

4z~3!

F4
1

p4

5F5
1OS 1

F6D ~90!

with F5b f j(t, f ) @~59! and ~60!#, we obtain the following
leading terms for the unrescaled thermal width

^Dx2~ t, f !&5S t

T0
D 2m/~11m!F12

2

3
~b f !2S t

T0
D 2m/~11m!

1O„~b f !4t4m/(11m)
…G ~91!

for t!tm( f ) ~55!, and

^Dx2~ t, f !&5

S b f

2 D m

tm

b f F12
4z~3!

@~b f !11mtm#3

1OS 1

@~b f !11mtm#4D G ~92!

for t@tm( f ).

E. Mean square displacement

In addition to the thermal width~86!, it is also interesting
to consider separately the two terms, namely, the m
square displacement

D0~F ![^X2&

522
2

F
1

2

F2
1

2

F4
c9S 11

1

F D
511

F2

3
2

F4

3
1O~F6! ~93!

and the square of the mean displacement

^X&2522
3

F
1

2

F2
2

1

F5
c-S 11

1

F D5F22
4F4

3
1O~F6!

~94!

in the rescaled variableX5x/j(t, f ) as usual.

F. Localization parameters

The localization parameters, defined as the disorder a
ages of the probabilities to findk independent particle in the
same trap, follow the scaling form

Yk
(m)~ t, f ![ (

x52`

1`

@Pt
( f )~x!#k5Y k

(m)
„F5b f j~ t, f !…,

~95!

where the scaling function at lowest order inm reads~74!
3-8
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Y k
(0)~F ![E

0

1`

dl1E
0

1`

dl2e2l12l2

3S Fe2Fl2
~12e2Fl1

!

12e2F(l11l2) G k

1F 12e2Fl2

12e2F(l11l2)G kD
5 (

m50

1` kGS 1

F
1mDG~k1m!

FG~11m!GS 11
1

F
1k1mD

3F 1

11Fm
1

1

11F~k1m!G . ~96!

The series expansion for smallF gives the first correction
with respect to the unbiased case@9#

Y k
(m)~F !5

2

k11
1F2

2k~k21!

~k11!~k12!~k13!

1F4
2k~k21!~k2215k24!

~k11!~k12!~k13!~k14!~k15!

1O~F6!, ~97!

whereas for largeF, the first corrections with the directe
case@29# read

Y k
(0)~F !512@gEuler1c~k!#

1

F

1S @gEuler1c~k!#2

2
1

p2

4
2

3

2
c8~k! D 1

F2

1OS 1

F3D . ~98!

For k52 andk53, we may moreover sum the series~96!
to obtain

Y 2
(0)~F !512

1

F
1

2

F2
2

2

F3
c8S 11

1

F D ~99!

Y 3
(0)~F !512

3

2F
1

3

F2
2

3

F3
c8S 11

1

F D ~100!

which are thus related by the very simple relation

12Y 2
(0)~F !

2
5

12Y 3
(0)~F !

3
. ~101!

This relation actually reflects the two-d structure of the dif-
fusion front in any given sample: indeed, if we notep1 and
p2 the weights of the two-d peaks withp11p251, it is
immediate to obtain the relation~101! since

12Y2
(0)5~p11p2!22p1

22p2
252p1p2 ,
02610
12Y3
(0)5~p11p2!32p1

32p2
253p1p2~p11p2!53p1p2 .

~102!

G. Entropy

The entropy~11! is closely related to the localization pa
rameters~95! since it reads

S~ t, f ![2 (
x52`

1`

Pt~x!ln Pt~x!

52F ]Yk
(m)~ t, f !

]k
G

uk51

5S (m)
„F5b f j~ t, f !…, ~103!

where the scaling function reads at lowest order inm

S (0)~F !5

c9S 11
1

F D
F2

1 (
m50

1` S 1

~11F1Fm!2
2

1

~11Fm!2D
3Fc~11m!2cS 11

1

F
1mD G . ~104!

The asymptotic behaviors are given by the series

S (0)~F !5
1

2
2

F2

12
1

F4

20
1O~F6! ~105!

for small F and by

S (0)~F !5
p2

6F
2

3z~3!

F2
1OS 1

F3D ~106!

for large F. So for the unbiased casef 50, the entropy re-
mains forever frozen at the valueS (0)(F50)51/2. For the
biased case, the entropy decays towards zero as the dire
character gets stronger as time grows.

H. Two-particle correlation function

The two-particle correlation function reads

C~ l ,t ![ (
x52`

1`

(
x852`

1`

Pt~x!Pt~x8!d l ,ux2x8u

.
t→`

Y2
(0)d l ,01

1

j~ t, f !
CmS l5

l

j~ t, f ! D , ~107!

where the weight of thed peak corresponds as it should
the localization parameterY2

(0) discussed above, whereas th
scaling function of the long-ranged part reads at lowest or

C0~l,F !5e2l
122Fle2Fl2e22Fl

F~12e2Fl!2
. ~108!
3-9
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In particular, the first correction with respect to the un
ased case reads@9#

C m
(0)~l,F !5e2l

l

3 F12
F2l2

30
1O~F4l4!G . ~109!

VI. EFFECTIVE DYNAMICS WHEN THE FIELD f IS
APPLIED FOR tÐtw

We now study the dynamics in the following aging ‘‘ex
periment’’ already considered in Ref.@22#: the system first
evolves with no external fieldf 50 during the intervalt
P@0,tw#, and then an external fieldf .0 is applied fort
P@ tw ,1`#.

A. Time sector governed by the effective dynamics

The scale of the renormalized landscape correspondin
time tw and to no external fieldf 50 reads~54!

R~ tw , f 50!5S tw

T0
D 1/~11m!

. ~110!

The corresponding length scale between renormalized t
is given by~59!

j~ tw , f 50!5S tw

T0
D m/~11m!

. ~111!

The state reached attw , which is made out of two-d
peaks~74!, has to be considered as an initial condition f
the dynamics in the presence off .0 in the new time (t
2tw). Since attw , the particle is typically in a trap of trap
ping time t.R(tw , f 50), the effective dynamics corre
sponds to no move as long asR(t2tw , f ),R(tw,0), whereas
the effective dynamics governed by the decimation pro
dure becomes ‘‘active’’ forR(t2tw , f ).R(tw , f 50). As a
consequence, it is useful to introduce the parameter

a~ t,tw , f ![
j~ t2tw , f !

j~ tw , f 50!
5

Rm~ t2tw , f !

Rm~ tw , f 50!
~112!

that measures the ratio of the length scales of renormal
landscape at the two scalesR(t2tw , f ) andR(tw , f 50). The
response in the time sectora,1, which is governed by rare
events will be discussed separately in the Sec. IX. In
section, we will concentrate on the time sectora(t,tw , f )
.1, where the effective dynamics governed by the decim
tion procedure is the leading effect.

B. Role of the characteristic timetµ„f … associated to the
external field

We have already seen that a biasf introduces the charac
teristic time scaletm( f )5(1/b f )(11m)/m ~55!. It is thus natu-
ral that the domain in (t2tw) corresponding to the time sec
tor a.1 actually depends on the relative value oftw with
respect totm( f ).

For tw!tm( f ), the time sectora.1 corresponds to the
domain (t2tw).tw , and the ratioa interpolates between
02610
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a~ t,tw , f !5S t2tw

tw
D m/~11m!

for tw,t2tw!tm~ f !

~113!

and

a~ t,tw , f !5S b f

2
~ t2tw!

tw
1/~11m!

D m

for t2tw@tm~ f !.

~114!

On the other hand, fortw@tm( f ), the the time sectora
.1 corresponds to the domain (t2tw).(2/b f ) tw

1/11m , and
we have Eq.~114! in the whole time sectora.1.

To simplify the reading in the following, we will use th
simplified notations

R[R~ t2tw , f !,

Rw[R~ tw , f 50!,

a[a~ t,tw , f !5
Rm

Rw
m

. ~115!

C. Statistical properties of the renormalized landscape at two
successive scales

To study the two-time effective dynamics, we will nee
the probability measure for the renormalized landscape at
two successive scalesRw andR. Since the two sides of the
origin are independent, we first consider the half linex.0
alone. The joint probability that the first renormalized trap
scaleRw is at distancel w

1 , has a trapping timetw
1 and that

the first renormalized trap at scaleR is at distancel 1 reads

ARw ,R~tw
1 ,l w

1 ; l 1!

5u~tw
1.Rw!

m

~tw
1!11m

e2 l w
1/Rw

m

3Fu~tw
1.R!d~ l 12 l w

1!

1u~tw
1,R!u~ l 1. l w

1!
1

Rm
e2( l 2 l w

1)/RmG .

~116!

After integration over the trapping timetw
1 , we obtain the

scaling form

ARw ,R~ l w
1 ; l 1![E dtw

1ARw ,R~tw
1 ,l w

1 ; l 1!

5
1

Rw
mRm

AS lw
1[

l w
1

Rw
m

;l1[
l 12 l w

1

Rm
;a[

Rm

Rw
mD

~117!
3-10
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with the scaling function

A~lw
1 ;l1;a!5e2lw

1F 1

a
d~l1!1S 12

1

a D u~l1.0!e2l1G .
~118!

Since we have the same properties for the half linex
,0, the measure for the full line reads

A~lw
1 ;lw

2 ;l1;l2;a!

5u~lw
1.0!u~lw

2.0!e2lw
1

2lw
2

3F 1

a
d~l1!1S 12

1

a D u~l1.0!e2l1G
3F 1

a
d~l2!1S 12

1

a D u~l2.0!e2l2G .
~119!

D. Rules for the two-time effective dynamics

Given the configuration (l2,lw
2 ,lw

1 ,l1) characterizing
the renormalized landscape at the two successive scales
two-time diffusion front takes the scaling form

P~x,t;xw ,twu0,0!

5
1

Rw
mRm

P
$l2,l

w
2 ,l

w
1 ,l1%

(m)

3S Xw5
xw

Rw
m

,Y5
x2xw

Rm
,F5b f Rm,a5

Rm

Rw
mD
~120!

with

P
$l2,l

w
2 ,l

w
1 ,l1%

(0)
~Xw ,Y,F,a!

5
lw

2

lw
11lw

2
d~Xw2lw

1!FW1S l1,l21
lw

11lw
2

a
,F D

3d~Y2l1!1W2S l1,l21
lw

11lw
2

a
,F D

3dS Y1l21
lw

11lw
2

a D G1
lw

1

lw
11lw

2
d~Xw1lw

2!

3FW1S l11
lw

11lw
2

a
,l2,F D

3dS Y2l12
lw

11lw
2

a D
1W2S l11

lw
11lw

2

a
,l2,F D d~Y1l2!G . ~121!
02610
the

We are now in position to compute various observables
the aging regime from the knowledge of the samp
dependent two-time diffusion front~122! and from the mea-
sure~120! over the samples.

VII. OBSERVABLES WHEN THE FIELD f IS APPLIED
FOR tÐtw

A. Disorder averaged two-time diffusion front

The disorder averaged diffusion front with the measu
~120! reads

P (0)~Xw ,Y,F,a!

[E
0

1`

dlw
1E

0

1`

dlw
2E

0

1`

dl1

3E
0

1`

dl2A~lw
1 ;lw

2 ;l1;l2;a!

3P
$l2,l

w
2 ,l

w
1 ,l1%

(0)
~Xw ,Y,F,a!

5@u~Xw>0!u~Y>0!1e2FuYuu~Xw<0!u~Y<0!#

3g11
(0) ~ uXwu,uYu,F,a!1@u~Xw<0!u~Y>0!

1e2FuYuu~Xw>0!u~Y<0!#g21
(0) ~ uXwu,uYu,F,a!,

~122!

where

g11
(0) ~Xw ,Y,F,a!

5e2XwF 1

a
d~Y!1S 12

1

a De2YG E
0

1`

dlw
2e2lw

2

3
lw

2

Xw1lw
2 F S 1

a D 12e2F(Xw1lw
2/a)

12e2F(Y1Xw1lw
2/a)

1S 12
1

a D E
0

1`

dl2e2l2 12e2F(l21Xw1lw
2/a)

12e2F(Y1l21Xw1lw
2/a)G

~123!

and

g21
(0) ~Xw ,Y,F,a!

5e2XwS 12
1

a D E
0

1`

dl2e2l2 12e2Fl2

12e2F(Y1l2)

3E
0

1`

dlw
1e2lw

1 lw
1

lw
11Xw

F 1

a
dS Y2

lw
11Xw

a D
1S 12

1

a D uS Y2
lw

11Xw

a De2(Y2lw
1

1Xw /a)G .
~124!

The form ~122! presents the simple property
3-11
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P (0)~2Xw ,2Y,F,a!5e2FYP (0)~Xw ,Y,F,a! ~125!

which is expected to be true for arbitrarym, as a conse-
quence of the nonlinear fluctuation theorem discussed in
@23#.

B. Law of the relative displacementY betweentw and t

We now consider the partial law of the rescaled relat
displacementY betweentw and t, i.e., we integrate the dis
order averaged diffusion front~122! over the positionXw at
time tw : we obtain the form

P (0)~Y,F,a![E
2`

1`

dXwP (0)~Xw ,Y,F,a!5@u~Y>0!

1e2FuYuu~Y<0!#G~Y,F,a!, ~126!

where

G~Y,F,a!5E
0

1`

dXw@g11
(0) ~ uXwu,uYu,F,a!

1g21
(0) ~ uXwu,uYu,F,a!#. ~127!

Using the intermediate results

E
0

1`

dXwg11
(0) ~Xw ,Y,F,a!

5
1

2a
d~Y!1

1

2
e2YE

0

1`

du
12e2Fu

12e2F(Y1u)

3@e2u2e2au# ~128!

and

E
0

1`

dXwg21
(0) ~ uXwu,uYu,F,a!5

1

2
~e2Y2e2aY!E

0

1`

due2u

3
12e2Fu

12e2F(Y1u)
, ~129!

we finally obtain

P (0)~Y,F,a!5
1

a
d~Y!1@u~Y>0!

1e2FuYuu~Y<0!#Gns~ uYu,F,a!,

~130!

where the nonsingular part is given in terms of the funct

Gns~Y,F,a!5
e2Y

2 E
0

1`

du
12e2Fu

12e2F(Y1u)

3@~22e2(a21)Y!e2u2e2au#

5e2Y(
n50

1`

e2FnYF H

~11Fn!~11F1Fn!
02610
f.

e

3~22e2(a21)Y!2
H

~a1Fn!~a1F1Fn!G .
~131!

The presence of a singular part ind(Y) for the rescaled
relative displacement was already found in the case of
Sinai model by the RSRG approach@26# and by mathemati-
cians@35#. Here the weight ofd(Y) is simply given by (1/a)
~112! which represents the probability for a renormaliz
trap at scalej( f 50,tw) to be still present in the renormalize
landscape at the new scalej( f ,t2tw).

C. Disorder averaged mean position

Since^xw&50 in any sample, in the effective dynamics
the limit m→0 but also more generally for anym as a con-
sequence of a special dynamical symmetry@23#, the mean
position ^x& at time t in a sample also corresponds to th
mean displacement̂(x2xw)& between the timestw and t.
The disorder average of the mean position takes the sca
form the scaling form

^x&~ t,tw , f !5RmXmS F5b f Rm,a5
Rm

Rw
mD , ~132!

where the scaling function is simply given in terms of t
law of the relative displacementY ~130!

X0~F,a!5
1

2E0

1`

dv
1

12e2FvE0

v
dYYe2Y~12e2FY!

3~12eFY2Fv!@~22e2(a21)Y!eY2v2eaY2av#

512
1

F
2

1

F3
c9S 11

1

F D2
1

2a
2

1

2a2

1
1

2~a211F !
2

1

2a2~a212F !

1
1

~a21!~~a21!22F2!
Fc8S 11

1

F D
2c8S 11

a

F D G . ~133!

We now consider various limit expressions.
On one hand, for fixeda, the asymptotic expressions fo

small F and largeF which generalize~82! and ~83! read

X0~F,a!5F12
1

a2G F

2
2

1

6 F12
1

a3GF3

1
1

6 F12
1

5 S 1

a3
1

3

a4
1

1

a5D GF51O~F7!

~134!

and
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X0~F,a!5S 12
1

2a
2

1

2a2D 2
1

2 S 12
1

a2D 1

F

2
1

2 S a212
1

a
1

1

a2D 1

F2
1OS 1

F3D .

~135!

On the other hand, for fixedF, we have at the beginning
of the aging regime where (a21) is small

X0~F,a!5~a21!F3

2
2

1

F
1

1

2F4
c-S 11

1

F D G
1O„~a21!2

…, ~136!

whereas for largea, the first corrections with respect to th
previous result~81! corresponding toa→` read

X0~F,a!512
1

F
2

1

F3
c9S 11

1

F D2
F

2a2

1F2F1
F2

2
1c8S 11

1

F D G 1

a3
1OS 1

a4D
~137!

D. Mean-square displacement during†tw ,t‡

Similarly, the mean-square displacement during@ tw ,t#
takes the scaling form

D~ t,tw!5^@x~ t !2x~ tw!#2&5R2mDmS F5b f Rm,a5
Rm

Rw
mD .

~138!

where the scaling function is again obtained from the law
the relative displacementY ~130!

D0~F,a!5E
0

1`

dYY2@11e2FY#
e2Y

2 E
0

1`

du
12e2Fu

12e2F(Y1u)

3@~22e2(a21)Y!e2u2e2au#

522
2

F
1

2

F2
2

1

a
2

1

a3
1

1

a211F

2
1

~a211F !2
2

1

a2~a212F !2

2
1

a3~a212F !
1

4~a21!

F„~a21!22F2
…

3Fc8S 11
1

F D2c8S 11
a

F D G
1

2~a21!22F2

F4
„~a21!22F2

…

c9S 11
1

F D

02610
f

1
1

F2
„~a21!22F2

…

c9S 11
a

F D . ~139!

For fixeda, the asymptotic expressions for smallF, and
largeF respectively, read

D0~F,a!512
1

a2
1F1

3
2

1

2a2
1

2

3a3
2

1

2a4GF2

1F2
1

3
1

1

6a2
1

1

5a3
2

2

5a4
1

1

5a5
1

1

6a6G
3F41O~F6! ~140!

and

D0~F,a!522
1

a
2

1

a3
2S 12

1

a3D 1

F
1S 22a2

1

a3D 1

F2

1OS 1

F3D . ~141!

For fixedF, we have at the beginning of the aging regim
where (a21)

D0~F,a!5F42
3

F
1

2

F2
2

1

F5
c-S 11

1

F D G ~a21!

1O„~a21!2
…, ~142!

whereas for largea, we obtain the first corrections to th
previous result~93!

D0~F,a!5F22
2

F
1

2

F2
1

2

F4
c9S 11

1

F D G
1F2F1

1

F2
c9S 11

1

F D G 1

a2

1F221F21
4

F
c8S 11

1

F D
1

2

F2
c9S 11

1

F D G 1

a3
1OS 1

a4D . ~143!

E. Thermal width

The rescaled thermal width

Dm~F,a!5^X2&2^X&2 ~144!

may be similarly computed, but since the full expression
rather lengthy, we will only give the asymptotic forms.

For fixed a, the asymptotic expressions for smallF and
largeF, respectively, read
3-13
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D0~F,a!511F2
2

3
1

1

a3
2

1

3a4GF2

1F12
5

3a4
1

4

9a5
1

2

9a6GF41O~F6!

~145!

and

D0~F,a!5
1

3a
1

1

3a2
1

1

3a3
1S 2

3
2

2

3a3D 1

F

1S a

6
2

1

6
2

5

6a2
1

5

6a3D 1

F2
1OS 1

F3D .

~146!

For fixed F, at the beginning of the aging regime whe
(a21) is small, we have

D0~F,a!511F221
2

F
2

2

3F2
2

2

3F5
c-S 11

1

F D
2

1

3F6
c-8S 11

1

F D G ~a21!1O„~a21!2
…,

~147!

whereas for largea, we obtain the first corrections to th
previous result~87!

D0~F,a!5
1

F
1

2

F4
c9S 11

1

F D1
1

F5
c-S 11

1

F D1
F2

a3

1F3F22
10

3
F31

10

3
c9S 11

1

F D G 1

a4
1OS 1

a5D .

~148!

For the casetw50, corresponding toa5` we have pre-
viously found a very simple relation~88! between the two
scaling functions describing the mean position and the th
mal width. Here, in the aging casetw.0 with finite a, there
does not seem to exist a simple generalization of Eq.~88!.

VIII. VARIOUS REGIMES FOR THE RESPONSE IN THE
LIMIT µ\0

In this section, we translate our results for the disor
averaged mean position@~132! and ~133!# into the original
unrescaled quantities, using the definitions forF5b f j(t, f )
and fora(t,tw , f ) ~112!. We have to distinguish various re
gimes, according to the relative values of the times (t,tw)
and of the characteristic time scaletm( f ) ~55! associated to
the forcef.
02610
r-

r

A. Casetw™tµ„f …

For tw!tm( f ), we obtain from Eqs.~134! and ~113! the
behavior in the sectortw,t2tw!tm( f ):

^x&~ t,tw , f !.
b f

2
~ t2tw!m/~11m!F12S tw

t2tw
D 2m/~11m!G

~149!

and from Eqs.~135! and ~114! the behavior at long timest
2tw@tm( f ):

^x&~ t,tw , f !.S b f

2 D m

~ t2tw!mF12
1

2 S tw
1/~11m!

b f /2~ t2tw!
D m

2
1

2 S tw
1/~11m!

b f /2~ t2tw!
D 2mG . ~150!

Moreover, at the beginning of the effective dynamics
gime a→1 ~113!, the expressions~134! and ~136! coincide
and give

^x&~ t,tw , f ! .
t2tw→tw

b f tw
m/~11m!F S t2tw

tw
D m/~11m!

21G ,
~151!

whereas asymptotically whena→` ~114!, the expressions
~135! and ~137! give

^x~ t, f !& .
t2tw@

2
b f tw

1/11m

S b f

2 D m

~ t2tw!m ~152!

B. Casetwštµ„f …

For tw@tm( f ), the time sectora.1 ~114! implies thatt
2tw@tm( f ) and we obtain from Eqs.~135! and ~114! the
behavior at long times in time sectort2tw@tm( f ) and t

2tw.
2

b f
tw
1/(11m)

^x&~ t,tw , f !5S b f

2 D m

~ t2tw!mF 12
1

2 S tw
1/~11m!

b f

2
~ t2tw!D m

2
1

2 S tw
1/~11m!

b f

2
~ t2tw!D 2mG . ~153!

Here at the beginning of the aging regimet2tw

→ (2/b f ) tw
1/11m , the expressions~135! and ~136! coincide

and give

^x&~ t,tw , f ! .
t2tw→ 2

b f tw
1/~11m!

3

2
tw
m/~11m!F S b f

2
~ t2tw!

tw
1/~11m!

D m

21G
~154!
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whereas at at the end of the aging regimea→` ~114!, the
expressions~135! and ~137! again give expression~152!.

C. Discussion

The results of this section, that rely on the effective d
namics picture, are valid at lowest order in the high disor
limit m→0, and in the asymptotic aging regime where t
two times are big t→`, tw→`, with the parameter
a(t,tw , f ).1 ~112! being fixed. We have found various in
teresting behaviors depending on the relative values of
parameters (t,tw , f ). Whenever they can be compared, o
results agree with the scaling analysis presented in Ref.@22#.
In the following section, we discuss the behavior of the
sponse in the time sectora,1, which is governed by rare
events.

IX. RESPONSE IN THE TIME SECTOR a„t,tw ,f …Ë1
FROM RARE EVENTS

As explained before, in the time sectora(t,tw , f ),1
~112!, the effective dynamics governed by the decimat
procedure gives no contribution, and the response will t
be governed by rare events. A similar situation was alre
found in the RSRG studies on the Sinai model@26# and and
on the out-of-equilibrium dynamics of the random field Isi
model @28#.

A. Description of the rare events

For the trap model considered here, the ‘‘rare events’’ t
are responsible for the response in the time se
a(t,tw , f ),1, can be described as follows: the partic
which is assumed to be trapped in a renormalized trat
.R(tw,0) at timetw in the effective dynamics, has actually
small probability to be attw in a ‘‘small’’ trap, i.e., an already
decimated trapt,R(tw,0), for two reasons.

~i! Whenm is small but finite, the particle can be found
time tw in a trap t,Rw with a probability of orderm, as
explained in Ref.@9#, where the corrections inm with respect
to the effective dynamics of the unbiased trap model w
studied in details.

~ii ! When tw is large but not infinite, there is a sma
probability that the particle is doing an excursion@~34! and
~38!# at time tw .

In both cases, the particle that happens to be in a sm
trap attw will respond to the external field in the time sect
a,1.

B. Correction of order µ to the effective dynamics

In the previous study on the unbiased trap model@9#, we
have studied in details the first corrections at orderm to the
effective dynamics. In particular, we have shown that in
asymptotic time regime, the particle can be found with
probability of orderm in the biggest trapS contained in the
interval ]M 2 ,M 1@ between the two renormalized trap
around the origin at scaleR(tw , f 50). In particular, we have
02610
-
r

e
r

-

n
s
y

t
r

,

e

all

e
a

obtained that the probabilitycRw

(m)(t) to be attw in a trap of

trapping timet was given in the domaint,Rw at first order
in m by

cRw

(m)~t!u~t,Rw!.m
Rw

3/2

t5/2
K1SARw

t DK2SARw

t D ,

~155!

where we have dropped numerical factors of order 1~we
refer the reader to Ref.@9# for precise results!. In particular,
this probability presents an essential singularity at the ori

cRw

(m)~t!.t→0m
Rw

t2
e22ARw /t, ~156!

which means that it is very unlikely for the particle to b
trapped attw in the biggest trapS contained in the interva
] M 2 ,M 1@ if the trapping timet of S is much smaller than
Rw .

As a consequence, the integrated probability up to scaR
~with R,Rw):

ER

dtcRw

m ~t!;mE
1/Aa

1`

dzz2K1~z!K2~z! ~157!

that is of orderm whena;1, will also present an essentia
singularity for smalla5R/Rw :

ER

dtcRw

m ~t!;a→0m
1

Aa
e22/Aa ~158!

C. Probability to be doing an excursion attw

1. Probability to be doing an unsuccessful excursion at tw

From the discussion on unsuccessful excursions, the p
ability for a particle to be trapped in the vicinity of a reno
malized trapt0 at scaleR, with neighbors at distancesl 6

reads when the external field vanishes~34!

PR
out~t0 ,l 1 ,l2!.

tout

t in
.

l 11 l 2

6t0
. ~159!

After the average overt0 with the measure~14! and over the
lengths~13!, we obtain that the probability to be doing a
unsuccessful excursion at timetw reads~110!

Pout~ tw![PRw

out~t0 ,l 1 ,l2!;mRw
m215mtw

~m21!/~11m! .

~160!

As expected, the probability of these rare events is v
small whentw is large sincem,1. In addition, there is a
prefactorm that makes this probability even smaller in th
limit m→0.

2. Probability to be doing a successful excursion at tw

The particle may be in a successful excursion attw , if it
belongs to a renormalized trap that gets decimated aro
the scaleRw . From the discussion on successful excursio
3-15
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the diffusion time for a lengthl;Rw
m reads when the externa

field vanishes reads@~A22! and ~A24!#

tdi f f~ f 50,l !.
l 2

6
;Rw

2m . ~161!

This time window of width (Dt)w;Rw
2m;tw

2m/(11m) around
tw corresponds in RG scale to a window aroundRw

;tw
1/(11m) of width DRw;tw

2m/(11m)(Dt)w;tw
m/(11m) . As a

consequence, the probability to be doing a successful ex
sion attw can be obtained from the probability to be in a tr
t;Rw ~14! times the window width just estimated

Pdi f f~ tw!;qRw
~Rw!DRw;tw

~m21!/~11m! . ~162!

The probability is again very small as expected, and happ
to have exactly the same scale as~160!.

3. Probability to be in a small trapt during an excursion

For a particle doing an excursion, we are now interes
into the probabilitycRw

exc(t) to be in a trap of trapping time

t. We have obtained above that the total probability to be
a small trapt,Rw behaves as

ERw
dtcRw

exc~t!;mtw
~m21!/~11m! ;mRw

m21 . ~163!

Assuming that the dependence ofcRW

exc(t) in t is given by

tq(t), i.e., the initial distribution~6! weighed by the trap-
ping time t ~i.e., the particle spends in each trap a tim
proportional to its trapping time!, we obtain the estimation

cRw

exc~t!;Rw
2(m21) m

tm
u~t,Rw!, ~164!

which is rather flat for smallm→0, in contrast with Eq.
~156!. In particular, the integrated probability up to scaleR
~with R,Rw) reads

ER

dtcRw

esc~t!;Rw
2(m21)R12m5Rw

(m21)a12m. ~165!

D. Contribution to the response of these rare events

When the initial condition attw is a small trap of trapping
time t, the effective dynamics will become active aga
whenR( f ,t2tw) reachest, i.e., whena reachest/Rw,1,
and the corresponding contribution to the response read

~^x&!t~ t,tw , f !5u~R.t!RX0~F5b f Rm!, ~166!

where the conditionu(R.t) means that the trap has bee
decimated at scaleR, and thus the response is given in term
of the scaling function~81! found before for the casetw
50. Averaging overt with the total probabilitycRw

(t)

5cRw

(m)(t)1cRw

exc(t) coming from the two kinds of rare

events described above, we obtain the leading term of
response in the sectora5R/Rw,1 as
02610
r-

ns

d

n

e

~^x&!rare~ t,tw , f !5ER

dtcRw
~t!~^x&!t~ t,tw , f !

5RX0~F5b f Rm!F ER

dtcRw

(m)~t!

1ER

dtcRw

esc~t!G . ~167!

Using the estimations of the integrated probabilities fou
before@~158! and~165!#, we finally obtain that the contribu
tion of excursions dominate for smalla,aw , whereas the
contribution of the corrections inm to the effective dynamics
are dominant foraw,a,1. The scale of the crossove
value aw can be estimated from the equality between E
~158! and ~165! at leading order

aw;
1

~ ln Rw!2
. ~168!

In conclusion, before the response of the effective dyna
ics in the sectora.1 given in Eqs.~149!, ~150!, and~153!,
there exists a response in the sectora,1 as a consequenc
of rare events. For very smalla,aw , the response come
from the particles doing excursions in anomalously sm
traps attw , and it is reduced by a very small prefactor
order mtw

2(m21)/(m11)(t2tw)(12m)/(m11) ~165!. On the other
hand, foraw,a,1, the response is governed by particl
which are ‘‘in delay’’ with respect to the effective dynamic
as a consequence ofm being finite, and the response is r
duced by only a factor ofm.

X. DISCUSSION OF THE FLUCTUATION-DISSIPATION
RELATION

A. Linear response regime in a given sample in the effective
dynamics time sector

From the diffusion front~121! in a given sample charac
terized by (l1,l2 ,l1,l2), we obtain at lowest order inF
the following results for the rescaled mean position

^x&~ t,tw , f !

j~ t2tw , f !
5^Y&~a,F !

5Fl1l2

2
1

l1lw
21lw

1l2

2a GF1O~F2!

~169!

and the rescaled mean-square displacement

^~x2xw!2&~ t,tw , f !

j2~ t2tw , f !
5^Y2&~a,F !

5Fl1l21
l1lw

21lw
1l2

a G1O~F !.

~170!
3-16



iti

e

s
d

f-
ar
o
th
e

ex

n
te

ro
-
is
ry
e

tie
in
re
a

th
a

D

te
ent

re

e-
e is

r
pace
t of
n
-
ir
the
ese
licit
the
m-
the
our

ant

ow,
rnal
re-

-
ging

.
if it

tely
e-

ase
has

del
trap
ting
me
lly

ical
s for

NONLINEAR RESPONSE OF THE TRAP MODEL IN THE . . . PHYSICAL REVIEW E 69, 026103 ~2004!
So the Fluctuation-Dissipation Theorem~FDT! or Einstein’s
relation is valid in the whole time sectora.1 as long as the
linear response is valid and reads in unrescaled quant
with F5b f j(t2tw , f ),

^x&~ t,tw , f ! .
f→0

b f

2
^~x2xw!2&~ t,tw,0!. ~171!

This is in agreement with the scaling arguments and num
cal simulations presented in Ref.@22# and with the nonlinear
fluctuation theorem discussed in Ref.@23#, that proves that
the FDT relation is valid in any given sample for arbitrarym.

The validity of the FDT relation for the trap model in it
aging phase is nevertheless quite remarkable, since the
namics is completely out-of-equilibrium: indeed, in the e
fective dynamics, the weights of the two important traps
not given by Boltzmann factors, they do not even depend
the energies of these two traps, but they are given by
probabilities to reach one before the other one, and th
thus, only depend on the distances to the origin. This
ample, with the explicit expressions in a given sample@~169!
and ~170!#, thus shows that the validity of the FDT relatio
in the linear response regime does not imply that the sys
is at equilibrium or even near equilibrium.

B. Nonlinear response in the asymptotic aging sectora\`

In the asymptotic aging sectora→`, which also corre-
sponds to the case where the external field is applied f
the very beginningtw50, we have found a very simple re
lation ~88! between the scaling functions for the mean d
placement and the thermal width which is valid for arbitra
F and in particular in the whole nonlinear response regim
However, this relation found for disorder averaged quanti
does not seem to have a simple interpretation, since
given sample, there is not such a relation between the
caled mean position and the rescaled thermal width that
given by Eq.~74!

^x~ t, f !&
j~ t, f !

5
l1~12e2Fl2

!2l2e2Fl2
~12e2Fl1

!

12e2F(l11l2)

~172!

^Dx2~ t, f !&

j2~ t, f !
5~l11l2!2

e2Fl2
~12e2Fl1

!~12e2Fl2
!

~12e2F(l11l2)!2
.

~173!

Moreover, we have not found an equivalent relation whena
is finite ~144!. Nevertheless, after the average over
samples, we have obtained the following simple property
very long times in the aging regimea→` ~114!, i.e., in the
nonlinear response regime@~85! and ~92!#

lim
t→`

S ^x&~ t,tw , f !

^Dx2~ t,tw , f !&
D 5b f , ~174!

whereas, for comparison, there is a factor (1/2) in the F
relation of the linear response regime~171!
02610
es

ri-

y-

e
n
e
y,
-

m

m

-

.
s
a
s-
re

e
t

T

S ^x&~ t,tw , f !

^Dx2~ t,tw , f !&
D .

f→0

b f

2
. ~175!

As a comparison, in the pure trap model, it is immedia
to obtain the equations for the mean displacem
(d^n&pure /dt52sinh(bf/2) and for the thermal width
d^Dn2&pure /dt52 cosh(bf/2) so that their ratio is simply

^n&pure~ t !

^Dn2&pure~ t !
5tanh

b f

2
.

b f

2
~176!

for arbitrary time, in the regime of small asymmetry we a
interested in Eq.~10!.

XI. CONCLUSION

We have studied in details the dynamics of the on
dimensional disordered trap model when an external forc
applied from the very beginning att50, or only after a
waiting time tw , in the linear as well as in the nonlinea
response regime. Using a disorder-dependent real-s
renormalization procedure that becomes exact in the limi
strong disorderm→0, we have shown that the diffusio
front in each sample consists in two-d peaks, which are com
pletely out of equilibrium with each other, since the
weights represent the probabilities to reach one before
other one. The statistics of the positions and weights of th
d peaks over the samples was then used to obtain exp
results for many observables, such as the diffusion front,
mean position, the thermal width, the localization para
eters, and the two-particle correlation function. Since
renormalization procedure is defined sample by sample,
approach provides a very clear insight into the import
dynamical processes.

From a more general perspective, it seems that up to n
the studies on the response of aging systems to an exte
field have been mainly restricted to the linear response
gime @17,18#, which holds for fixed times (tw ,t) in the limit
of vanishing fieldf→0. However, as in the trap model dis
cussed here, it should be expected in a broad class of a
systems that, for a fixed small fieldf, the validity of the
linear response regime is limited in the time sector for (tw ,t)
by a characteristic timet( f ) depending on the external field
Indeed, it seems rather natural that an external field, even
is arbitrarily small, will, for sufficiently long times, drive the
system into a configurational landscape which is comple
different from the initial one. So in the asymptotic time r
gime beyond the characteristic scalet( f ), the response will
always be governed by nonlinear effects. For the special c
tw50, the full response including these nonlinear effects
already been studied for the Sinai model@26# as well as in
the coarsening dynamics of the random field Ising mo
@28#, via the RSRG approach: in both cases, as in the
model, the field introduces a characteristic time separa
the linear response regime from a nontrivial aging regi
with nonlinear effects. This scenario should more genera
apply to other coarsening dynamics. However, in numer
studies on domain growth processes, to get better result
3-17
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the linear response regime at large times, it is usually
response to a random field that is measured@36,37#, and not
the response to a constant field, that would favor one of
phase and induces nonlinear effects rapidly. Since this ch
of a random field for domain growth processes, is in so
sense the equivalent of a constant field for spin glasses@36#,
it seems that the nonlinear response of spin-glasses wi
very different from coarsening systems. For instance, in
dynamics of the spherical Sherrington-Kirkpatrick~SK!
spin-glass model@38#, the magnetic field introduces a cha
acteristic time that separates the aging dynamics of the lin
response regime from an equilibrium dynamics at la
times: here, the magnetic field does not lead at large time
a nontrivial aging regime with nonlinear effects in the fie
but rather gives rise to an interrupted aging phenomen
However, this scenario is not expected to hold for other s
glasses such as the usual SK model@38#, if one considers the
number of metastable states in a field@39#. In conclusion, the
understanding of the nonlinear effects that arise at la
times in the response of aging systems is still very inco
plete and should give rise to further studies in the future
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APPENDIX: STATISTICAL PROPERTIES OF
EXCURSIONS IN THE PRESENCE OF A FIELD

To study the excursions in the renormalized landscap
the presence of a field, we have to study the following st
dard problem: what is the probability distributionPt(x) of
the timet of the first passage atx50 without having touched
the other boundaryx5 l before, for a pure random walk star
ing at x with the asymmetryh5h( f ).0 ~8!?

For x51, . . . ,l 21, the probability distributionPt(x) sat-
isfies the equation

] tPt~x!5~11h!Px21~ t !1~12h!Px11~ t !22Pt~x!
~A1!

with the boundary conditionsP0(t)5d(t) andPl(t)50. So
the Laplace transform with respect tot

P̂x~s![E
0

1`

dte2stPt~x! ~A2!

satisfies

~11h!P̂x11~s!1~12h!P̂x21~s!2~21s!P̂x~s!50
~A3!

for x51, . . . ,l 21 with the boundary conditionsP̂0(s)51
and P̂l(s)50.

The solution reads

P̂x~s!5
r1

l ~s!r2
x ~s!2r2

l ~s!r1
x ~s!

r1
l ~s!2r2

l ~s!
~A4!
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in terms of the roots

r6~s!5
21s6As214s14h2

2~11h!
. ~A5!

The series expansion ins then yields the first moments

uk~x![E
0

1`

dttkPt~x!. ~A6!

1. Escape probabilities

For s50, the roots become~we assumeh.0) in terms of
the biasf ~8!

r1~0!51 ~A7!

r2~0!5
12h

11h
5e2b f ~A8!

and the probability to reach 0 beforel when starting atx,
thus, reads

u0~x!5 P̂x~s50!5
e2b f x2e2b f l

12e2b f l
. ~A9!

a. Escape probability along the drift

When starting atx51, the probability to reachx5 l with-
out any visit tox50 reads

pe
1~ l , f !512u0~x51!5

12e2b f

12e2b f l
. ~A10!

Here we are interested in the regimeb f !1 andl @1, where
the escape probability takes the scaling form

pe
1~ l , f !.

1

l
E1~u5b f l ! ~A11!

with the scaling function

E1~u!5
u

12e2u
. ~A12!

In particular, E1(u→0)→1 corresponds to the unbiase
case where the escape probability is simply 1/l . In the other
limit where u5→1`, we haveE1(u).u and the escape
probability becomes (b f ), i.e., it is proportional to the drift
and independent ofl.

b. Escape probability against the drift

When starting atx5 l 21, the probability to escape to 0
without without any visit tox5 l reads
3-18
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pe
2~ l , f !5u0~x5 l 21!5

~12e2b f !e2b f ( l 21)

12e2b f l
, ~A13!

which varies as it should betweenpe
2( l , f→0)51/l for the

unbiased case andpe
2( l , f→1)50 for the directed case. In

the regimeb f !1 andl @1, the escape probability takes th
scaling form

pe
2~ l , f !.

1

l
E2~u5b f l ! ~A14!

with the scaling function

E2~u!5
u

eu21
. ~A15!

In particular, E2(u→0)→1 corresponds to the unbiase
case where the escape probability is simply 1/l . In the other
limit whereu→1`, we haveE2(u).ue2u and the escape
probability becomes exponentially smallpe

2( l , f ).b f e2b f l .

2. Mean time for unsuccessful excursions

The expansion at first order ins of Eq. ~A4! yields Eq.
~A6! the mean time to reach 0 without any visit tox5 l when
starting atx:

u1~x!5
11e2b f

12e2b f Fx~e2b f x1e2b f l !

2~12e2b f l !
2

le2b f l~12e2b f x!

~12e2b f l !2 G .

~A16!

a. Unsuccessful excursion along the drift

For x51, in the limit b f !1 andl @1, the mean time of
unsuccessful excursions along the drift takes the sca
form

uus
1 ~ f ,l !5u1~x51!. lQ~u5b f l !, ~A17!

where the scaling function

Q~u!5
122ue2u2e22u

u~12e2u!2
~A18!

interpolates between
M

02610
g

Q~u!5
1

3
2

u2

90
1O~u4! ~A19!

for the unbiased case, where the mean time is (l /3), and

Q~u!.u→`

1

u
~A20!

where the mean time is 1/(b f ).

b. Unsuccessful excursion against the drift

The unsuccessful excursions against the drift have
same properties

uus
2 ~ f ,l !5uus

1 ~ f ,l !. ~A21!

3. Mean time for the successful excursions

Similarly, we find that the mean time needed to reachx
5 l when starting atx51 for a random walk conditioned no
to visit x50 takes the scaling form

tdi f f
1 ~ f ,l !. l 2D~u5b f l !, ~A22!

where the scaling function

D~u!5
u221~u12!e2u

u2~12e2u!
~A23!

interpolates between

D~u!5 1
6 1O~u2! ~A24!

for the unbiased case, where the mean diffusion time
( l 2/6), and

D~u!5
1

u
1OS 1

u2D , ~A25!

where the mean diffusion time isl /(b f ).
Similarly, we find that the mean time for a success

excursion against the drift has the same properties

tdi f f
2 ~ f ,l !5tdi f f

1 ~ f ,l !. ~A26!
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