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Nonlinear response of the trap model in the aging regime: Exact results in the strong-disorder limit
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We study the dynamics in the one-dimensional disordered trap model with a broad distribution of trapping
timesp(7)~ 1/7t"#, when an external force is applied from the very beginninig=a@, or only after a waiting
timet,,, in the linear as well as in the nonlinear response regime. Using a real-space renormalization procedure
that becomes exact in the limit of strong disorger-0, we obtain explicit results for many observables, such
as the diffusion front, the mean position, the thermal width, the localization parameters and the two-particle
correlation function. In particular, the scaling functions for these observables give access to the complete
interpolation between the unbiased case and the directed case. Finally, we discuss in detail the various regimes
that exist for the average position in terms of the two times and the external field.
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[. INTRODUCTION renormalization grougRSRQ procedure to derive various
explicit exact results in the limit of high disorder.

Trap models provide a simple phenomenological mecha- The RSRG methods, that have appeared in the field of
nism for aging[1-3]. Their aging properties have thus beendisordered quantum spin chaif#t,25, have then been very
much studied, either in the mean-field vers[dn-7], where  powerful to study the Sinai modék6], as well as reaction-
“usual aging” occurs, or in the one-dimensional version diffusion processes in a Brownian poten{idl’]. In particu-
[8,9], where both aging and subaging behaviors appear itar, since the out-of-equilibrium dynamics of the random
different correlation functions. The mathematicians have alséield Ising model(RFIM) can be described as a reaction-
been interested by these trap modéi8] with special atten- diffusion process in a Brownian potential for the domain
tion to the casesi=1 [11,12 and d=2 [13]. The one- Wwalls, the RSRG method has been ug2é] to study the
dimensional version is moreover interesting on its own, sincéesponse of the RFIM to an applied external magnetic field.
it appears in various physical applications concerning forThe RSRG approach is also very appropriate to study one-
instance transport properties in disordered chfdds15 or  dimensional trap models with a broad distribution of trap-
the dynamics of denaturation bubbles in random DNA seping timesp(7)~1/7'"# in the limit of high disorderu
quenceg16]. —0, as explained in details in R¢R9] for the directedtrap

The study of the response to an external field and its remodel, and in Ref[9] for the symmetrictrap model(i.e., in
lation with the thermal fluctuations has been for some yearthe absence of an external biathe RSRG method is able to
a central question in the description of the aging dynamics ofeproduce the exact exponents of the whole aging phase 0
glassy systemgl7,18. It is thus natural to consider the trap <u<1 and moreover allows one to compute exact scaling
models from this point of view. The studies on the violation functions for all observables in a systematic perturbation ex-
of the fluctuation-dissipation relation in mean-field trap mod-pansion inu [9,29]. In contrast with other usual methods for
els have shown that the results depend on the observabtisordered systems, the disorder average is not performed at
[19], and on the choice of functional form of the hopping the beginning but at the very end: the RSRG procedure is
rates[20,21]. For trap models on a hypercubic lattice, theredefined sample by sample, all observables are then evaluated
are no such ambiguities in the choice of observables anth terms of the relevant properties of a given sample, and can
external fields, since the natural observable is the positiorbe then averaged with the appropriate measure over the
one is interested into the response of the position to an exsamples. The RSRG approach thus provides a very clear in-
ternal bias, and in the thermal fluctuations of the positionsight into the important dynamical processes.

Recently, the response in the one-dimensional trap model In this paper, we generalize the RSRG approach described
was studied via scaling arguments and numerical simulations Ref.[9] for the unbiasedtrap model to include the influ-

in Ref. [22], where various regimes were found dependingence of an external bias, and we obtain exact results for
on the relative values of the two times considerég,{,,  various observables in the high disorder lipit—=0. The

+1t) and the external applied fielil the main results being paper is organized as follows. In Sec. Il, we describe the trap
that in the linear response regime, the fluctuation-dissipatiomodel in an external force fielt In Sec. Ill, we explain the
relation (or Einstein’s relatiohis still valid in the aging sec- real-space renormalization procedure in the presence of an
tor, whereas the response always become non-linear at lorgxternal field. In Sec. IV, we describe the effective dynamics
times. We have shown in Rdi23] that these two response when the external field is applied from the initial tinte
properties could be understood as consequences of a “nor=0. In Sec. V, we give explicit results for various one-time
linear Fluctuation Theorem” that originates from a very spe-observables, such as the diffusion fr¢8) the mean posi-

cial dynamical property of the trap model. In this paper, wetion (84,859, or the thermal width(91,92. In Sec. VI, we
consider again the response properties of the trap model, bdiscuss the effective dynamics when the external field is ap-
with a complementary point of view: we use a real-spaceplied only after a waiting time,,. In Sec. VII, we compute
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the corresponding two-time observables, such as the distri- C. Link with the “trap model with asymmetry”
bution of the relative displaceme(it30) and the mean posi-
tion (133. In Sec. VIII, we summarize our results for the
disordered averaged mean position in the various regime sb:tug|ed mf%Z]t t\’r\]’e Mnotte that t'nm;hbe new timet
defined by the two timest,t) and the external field. In [2 coshi(/2)] e Master equatio ecomes

Sec. IX, we discuss the rare events that are responsible for

To make the link with the “trap model with asymmetry h”

; . ; . dPﬁ)(x) q_(f) q.(f)
the response, in the time sector where the effective dynamics L P(f)( n 1)+ + I:,(f)( 1)
gives no contribution. Finally, in Sec. X, we compare the dt Ty+1
response and the thermal fluctuations in a given sample, to
discuss the validity of the fluctuation-dissipation relation. ——P~(f)(x) )
The conclusions are given in Sec. XI, and the Appendix con- Ty U '
tains more technical details.

where
II. MODELS AND NOTATIONS e=(B1/2) 1+h(f)
A. Master equation in a sample q:(f)= etB(112) L o=B(112) - 2 ®

To study the trap model in an external force fié|dve
consider the following Master Equatiga5,23

dP{(x)

g~ PO DWEL L+ POX-DWE.,

= PLOOIWEL 1y *WEL 1] (D)
with the initial conditionP{"(x)= 8, . The hopping rates
WL xoqy=e FEA2 v

satisfy the detailed balance condition

M = eBUx~Ux+1) (3)
W{X+14>X}
where the total energy
Uy=—E—fx (4)

contains both the random energy E,) of the trapx and the
potential energy { fx) linear in the positiorx induced by
the external applied fieldl

B. Law for the disorder

The trap energiegE,} are quenched random variables

distributed exponentially2]
1 —EIT
p(E)=0(E>0) e o (5)
9

This corresponds for the mean trapping time e’F to the
algebraic law

a(m)= (6)

with the temperature-dependent expongrt T/T,. At low
temperatureg.<1, the mean trapping timgdrrq(r) is in-
finite and this directly leads to aging effects.

are the probabilities to jump to the right and to the left when
escaping a trap, with the normalizatian. +q_=1. The
asymmetry

f
h(f)=q.—q-=tanhB3 9)
varies betweern(f=0)=0 for the unbiased case arf
—»)—1 for the fully directed case.

As soon ath>0, the random walk is expected to become
asymptotically directed on large scales. In this article, we
will be interested into the case where the crossover towards
the directed regime happens on large length scales, i.e., the
local asymmetry is very smali<1 or equivalentlyBf<1.

In this regime also considered in R¢22], the relation be-
tween the force and the asymmetry is at lowest order simply
linear

f
(=25 + o)

(10
and thus the results of the present paper can be straighfor-
wardly compared with Ref.22].

D. Entropy and generalized free energy

As in similar modeld30—32, the Shannon entropy

sm:—; P(x)In Py(x) (11)

and the energy (t) =2,P;(x)Uy (4) allows us to define a
generalized free energy

FO=U(t)-TSt)=2, P(x)[U+TINP(x)]. (12

The detailed balance condition implies that it is a nonincreas-
ing functiond #(t)/dt<0 The equality with zero is possible
only if all currents exactly vanish, corresponding to equilib-
rium. Here, since we consider the infinite line, the equilib-
rium cannot be reached and the free energy will decrease
with no bounds.
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T Whenever the particle escapes from the trgpit escapes to
’ . the right with probabilityq, =[1+h(f)]/2 and to the left
- with probabilityq_=[1—h(f)]/2 (8).

If it escapes on the right, it will succeed to reach the trap
oL I, i 7. with probability (A10)
. 1-e A
. g (fl)=—1, (15
T L Pe P e Al
- T, i which varies betweemp, (I,f—0)=1/, for the unbiased
Ty case ang, (I,f—=)=1 for the directed case.

If it escapes on the left, it will succeed to reach the trap

FIG. 1. Definition of the escape time from a trap in the renor- 7 with probability (AL3)

malized landscape: the trap of escape tirpexisting in the renor-

malized landscape at scaRis surrounded by two renormalized (1—e Blye All--1)

traps that are at distances andl _ on each side. The escape time po(f,1_)= (16)
T, is the mean time needed to reach eitheror 7_ when starting e 1—e Bfl- '
at T0-
which varies betweep, (I - ,f—0)=1/_ for the unbiased
lll. REAL-SPACE RENORMALIZATION PROCEDURE IN case ang; (I_,f—o)=0 for the directed case.
THE PRESENCE OF A FIELD Otherwise, it will be reabsorbed again by the trap So

We have already presented the real-space renormalizatide total probability to escape when exiting fram reads

procedure for thainbiasedtrap model in Ref[9]. Here we
wish to generalize this approach to the presence of an exter- pe(fil, 1 )=
e ) 1 —

et AMp Ll ) +e A Mp (1_ 1)
nal biasf>0. ’

etB(f12) 4 o= B(f12)

(17)

1. Number of sojourns in a renormalized trap before escape to a
neighboring renormalized trap

A. Notion of renormalized landscape at a scal®R

The basic idea of the real-space renormalization proce-
dure[9,26,29 is that the dynamics at large time is dominated
by the statistical properties of the large trapping times. The As a consequence, the probabillEg(n) to need (1+n)
renormalized landscape at sc&tds defined as follows: all successive sojourns in the trag before the particle suc-
traps with trapping timer,<R are decimated and replaced ceeds to escape either to the trapor to the trapr.. reads
by a “flat landscape,” whereas all traps with waiting time
7> R remain unchanged. At large sc&ethe distribution of Er(n)=[1—pe(f,l4,1)]"pe(f,l4 1), (18
the distancd between two traps of the renormalized land-

. o .
scape at scalR takes the scaling form For largeR, since we havd.=R*\. (13) we obtain

using Egs.(A1l) and (Al14) the scaling form for the prob-

1 ability of escapg17)
Pr(l)= 57)

|
N=—

= 13

where the scaling distribution is simply exponent2(\) R (19
:ef)\

The distribution of the trapping times of the traps in theyjth the scaling function
renormalized landscape at sc&tas simply

1 I,
~ = ey T =_1 -
pe(f1|+=|7) R"L¢ F ﬂfR 1)\ Rluy)\

F(l_efF()\*'Jr)\_))
(l—e*Fﬁ)(l—e*FV)

d(FiN Jx‘)=2 (20)

m RV
qR(T)=0(7'>R); ; . (14)
The expansion nedf—0 gives the first correction with re-

To relate the renormalization scd®o the timet, we have to spect to the symmetric case studied in R,

study the time needed to escape from a renormalized trap.

1| N+NT
B. “Escape time” from a renormalized trap to another d(F;NT A7) 5|t = —F?
. A Y 24
renormalized trap
~ We now study the escape tinTg from a trapr, existing B (A3 ()3 F4O(FS),  (2)
in the renormalized landscape at scBla the presence of a 1440 '

field f>0. This trap is surrounded by two renormalized traps
that are at distancels, and|_ on each siddsee Fig. L whereas in the other limiE—c, we have
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F .
HFNTNT) = 5(1+e—”*+e—“ Fo).

Fosoo

(22

As a consequence, at large scB®ethe numbem of re-
turns is distributed exponentially

Er(n)= (n)(;R,F)e[m(n)(R'F)] (23)
where the mean number of returns
I
(M(R,F)= m (29
varies between
<I’1>(R,FH0)=R"2 N (25)
NN
and
(M(RF—0)~Ri= = = 0

FBf

2. Total time spent inside a renormalized trap before escape to a
neighboring renormalized trap

Let us now consider the probability distributidt,(t;,)
of the total timet;, spent inside the trap, before its escape.
It can be decomposed into the numbesf sojourns, whera
is distributed with(18)

1+n
tin= >, tn, (27)
n=1

wheret,, is the time spent during the sojouirim the trapr,

so it is distributed with the exponential distribution with
mean timery. Actually, sincen is large in the largeR limit,
we have the central-limit theorem

tin = n<tn>:n7'0. (28)

n—oo

Since the numbaen is distributed with exponentiall{23), we
finally obtain thatt;, is also exponentially distributed

- 1
Pin(tin)zRHwT_e_(tm/TO) (29
0
with the characteristic time
T0=To<n>(R,F). (30)
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3. Total time spent during the unsuccessful excursions before
the escape

Among then unsuccessful excursions, there amexcur-
sions on the left andn(—m) excursions on the left, whera
is distributed with the binomial distribution2C}'. Sincen
andm are large, we again have a central-limit theorem

S tot 3t =mogf1)+(n-maiflL),
n= |=
(32

tout_

where 6, (f,1) represents the mean time needed to return to
0 when starting at£ 1) without touching the point£l) in

a flat landscape. Using the asymptotic behayi#&17) and
(A21)]

= 10 (u=jfl)

— 00

Ou(.1) (33
|

with the scaling function® given in Eqg.(A18), the ratio
betweent,,; andt;, (28) scales as

to—”t(R,F): 0,4(F, 1 )+ 0,4F,1,)
tin 2’7’0
~RAOFAY)+O(FA )], (34)
which varies betweefA19)
t
to—m(R,F—>0)~R’“1 (35)
in
and
tout .1 1
_out ~ReTI
s (RF—e)~R: 1o Bt (36)

We may thus negledt,,; with respect ta;, at large scalé&R.

4. Time spent during the successful excursion to escape

We finally consider the diffusion timeg;¢; of the success-
ful escape to the neighboring renormalized trap)(when
starting atx=1 without visiting x=0. The mean time
needed to reack=1, when starting ak=1 for a random
walk conditioned not to visix=0 takes the scaling form
(A22)

tairr(F,1:)=13D(u=pfl.), (37)
where the scaling functioB (u) is given in Eq.(A23). Using
also Eq.(A26), we obtain the scaling

Since the smallest trapping times existing in the renormal-

ized landscape at scaleis 7o=R, the time spent inside the
trap o before it succeeds to escape scales as

Rl+p,

tir‘l(R!F) -~ R<n>(R!F):

R— o0

IESS N

taifs

C (R,F)~R:ID(FN),

(38)

which is the same as E§34) and thusty;ss is again negli-
gible with respect td;, (31).
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5. Conclusion

So we obtain that the total time

tesc™ tin T tout™ Laifs (39
needed to escape is actually simply given by the timpe
spent inside the trap,. So the distribution of..is given by
the exponentia(29) with the escape tim&,.

In conclusion, a trap of the renormalized landscape

scaleR has a trapping time- distributed with Eq.(14), but
has an escape time proportional#o

o

Te=7(N)(R,F)=1 (40

H(FINTNT)
in terms of the two rescaled distances to the neighbors.

C. Distribution of escape times in the renormalized landscape

The distribution of the escape tinig in the renormalized
landscape at scalR is obtained by averaging ovet . :

T

+ 0 R\M [+ . _
QR(Te;f)zf drﬁ(—) f ditda"e™ TS
R T 0
RM

X| Te—m —— 7. 47
° ¢<F;v,x)7) (1
It thus takes the scaling form
. F Te
QR(Tevf)z R1+MQM T= R1+/‘L, il (42)
where the scaling function
Q (T'F)—Lf%d)\*d)\*e*“**‘
M o ('-‘I-)l-%—,u, 0
X[H(F;NT A7)0
Lo 1
X| d(F;NT N )>% (43
presents the asymptotic behavior
TRy~ M

with the prefactor
+ o0 .
cﬂ(F)=f d Tdh e ™ TN [p(FNTAT)]TH
0

+o _
:1—,uf d AN e N TN [ G(FI A )]
0

+0(u?). (45)
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For small u, the probability distributionQM(TI',F) is
dominated by its long tail, and we may approximate it by

TR\

= (46)

Qﬁ)zaﬁﬁﬁ))%

The cutoff'~I'#(F) chosen to preserve the normalization is

a?etermined by the coefficient in the long tail p&##) and

45)
T,(F)=[c,(F)]¥*=eSP+0(u), (47)

where the functior8(F) obtained from Eq(45) can be com-
puted with the explicit expressiai20)

sFr=— [ antan e g )

(48)

142
E

1 !
Ellf

1
=—InF+In2—yE—w(1+E
(49)

in terms of (z)=1"(2)/T'(z), and the Euler constange
=—y/'(1).

For the unrescaled probability distributi@a2), this cor-
responds to the cutoff

To(R,f)=R"#eS(F) (50)

D. Choice of the renormalization scaleR as a function of time

The renormalization scalR has to be chosen as a func-
tion of time by the requirement that this effective cutoff
To(R,f) is exactlyt, meaning that at tim& only traps with
escape time§ >t have been kept, whereas all traps with
escape time$.<t have been removed and replaced by a flat
landscape. So given a renormalization sdalend an exter-
nal field f, the corresponding timeof the dynamics reads

t=t(R,f)=R " #eSF=AIRY, (52)

The renormalization scalg(t,f) as a function of time and
field f is thus defined by the implicit equation
t=RA(t,f)eSBIRIEN), (52)

At short times, assuming = BfR*(t)<1, we may use

the expansion

S(F)=In2—1—ye— 5F2+O(F% (53
to solve Eq(52), to obtain the first correction with respect to
the unbiased case

2
14 (Bf)

£\ U+
) 12(1+p)

t 2ul(1+ )

To

(54)

whereT,=eX?=2e~17 7€, This solution is thus valid for
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1| (rmlle N 1 1]F
<<t f E(_) , 55 + )= PR _ —
W(F) B (55 W, (FAT\7) )\_ﬂﬁ )\++}\_ 2
where the time scal¢,(f) was already shown to play an a1 1
important role via other approachgz2,23. —+— F2+O(F?®),
At long times, assumingr = BfR*(t)>1, we may use 12\
the asymptotic behavior (64)

2

S(F)=— |nE_ T .0 (56)  Whereas for largé, the first corrections with respect to the

2 3F F2 directed case are given by
to solve Eq.(52) which leads to W, (FATAT) = 1—e P\ 4 FO T4
F—o
Bf w72k (65)
R(t,f)="%t 1+ ————+--- 5
(tH== 3B (57)

S . B. Rules for the effective d i
which is valid fort>t,(f) (55). dies for the efiective dynamics

As a consequence, the characteristic length scale corre- We thus define the effective dynamics by the following
sponding to the mean distance between renormalized traps &tles:

scaleR(t) (13 The particle starting at the origi@ will be at timet either
in the first trapM | of the renormalized landscape at scale
E(t,T)=RA(t,f) (58)  R(t,f) onits right or in the first trapM _ of the renormalized
landscape on its left. The weights of the trags andM _
behaves as in the unbiased case at short {13834 are given in terms of Eqg62) and (63) by
E(tf) = T M[14+0(u)] (59 P (M4 [0)=W, (F,\F \0), (66)
t<t,(f) -
and as Pim_m,1(M_[0)=W_(F,\",\7). (67)
§tf) = (BIOX[1+0(n)] (60)

t>t,(f) We now verify that this effective dynamics presents some
g important properties.

at long times.

C. Consistency upon iteration

IV. EFFECTIVE DYNAMICS IN THE LIMIT 0 . . . .
H= The rule for the effective dynamics is consistent upon

A. Probabilities to escape on the right or on the left in the iteration. Indeed, suppose there are three consecutive traps:
renormalized landscape the trapM _ is at a distancé_ from the origin on the left, the
trapM, is at a distancé, from the origin on the right, and

We are now interested into the relative probability to es | k ;
the trapM , . is at a distancéfrom the trapM , on the right.

cape on the right rather than to the left which regd$) and

(17)] using Eqs(A11) and (A14) Suppose that the trapl ;. is decimated before the traps
M _ andM, , . The new weights for the trapd _ andM , |
e PH2pt(f1,) become
W+(f1|+ ,|7)E p (f I | ) :WJr(Fr)\Jrr)\i) ,
el (61) Pv_=Pm_m,1(M_[0)
with the scaling function +p[M-M++](M*|M+)p[M-M+1(M+|O)
1_e P =pPm_m, ,1(M_[0) (68)
o\ )=
W+(F!)\ 1)\ )_ 1_e_F()\++)\*)' (62)

Pv, . =P m, 1My [M)pm_m (M [0)

++

The complementary probability to escape on the left reads 1o F
J— e —

—FxT —FxT ==
e 1—e _a F(i+1_+1)
1_e(—F()\++)\) : (63 e )

p[M7M++](M++|O) (69)

W_(FAT )=

and thus the rule§67) for the occupancies of renormalized
The expansion nedf—0 gives the first correction with traps are consistent upon decimation of traps in the renormal-
respect to the symmetric caf@)| ized landscape.
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D. Conservation of the mean position in any sample fof =

As already emphasized in Ref®2,23, the trap model

has a very special property: when there is no external fiel

PHYSICAL REVIEW E 69, 026103 (2004

We now compute the various observables that can be ob-
tained from the sample-dependent diffusion fr¢@t) and

(I]he measuré75) over the samples.

f=0 the mean position is a conserved quantity in any given

sample, as a simple consequence of the master equ@jion
for any realization of the trapping timgs,}. Here in the

B. Disorder averaged diffusion front

The averaged diffusion front takes the scaling form

effective dynamics, the mean position vanishes indeed in

each sample with the weights in zero fidle O given by Eq.
(64).

E. Nonlinear fluctuation theorem

The nonlinear fluctuation theorem obtained in R&f3]

says that, in any given sample of the trap model the diffusion

front P{*(n) in the presence of the external fielet {) and
the diffusion frontP{""(n) in the presence of {f) are
related by the extremely simple property

P (n)

— aBfn
— =efin,
PO (n)

(70

In the effective dynamics, this property is satisfied since the

renormalization landscape at tirhés the same for ¢ f) and
(—f), so the two possible positiongl , and M _ are the
same, and the weighf$62) and (63)] satisfy the properties

W, (—FAT A ) =e PHW (F AT A, (72)

W_(—=F AT A )=eP~-W_(F AT\ 7). (72

V. OBSERVABLES WHEN THE FIELD IS APPLIED FROM
THE BEGINNING t=0

A. Diffusion front in a given sample

In the effective dynamics, the diffusion front in a given
sample takes the scaling form

_p(0>

F=pI&t, f))
(73

§(t &)

where the characteristic length scglg,f) has been defined
in Egs. (52) and (58) from the renormalization landscape,

and where the scaling function reads according to the effec-

tive dynamics(67)

—F)\f(l_e—F)\Jr)

PO(X |:)=e S(X+N7)
’ 1—e FOAT+17)
_aFAT
+1e—+,5(x_7\+) (74
1_e—F()\ +\7)

in terms of the two rescaled distances between the origin

and the nearest renormalized traps. The joint distribution of

the two rescaled distances is completely factorized

DA AT )=0(AT) O\ e N A (75)

Pi(n,f)= (76)

1
&, f)g“( g(t aon T oArED )

where the scaling functiog, reads at lowest order i
—0

go(X,F)=e" X[ o(X>0)+ o(X<0)e FIX]

~FA

+ oo —
-\
xjo dre —1_64:(‘)(‘“) (77)
=e X[ o(X>0)+ o(X<0)e FX]
xE F e NFIXI (78)
0 (L+Fn)(1+F+Fn) '

which interpolates between the diffusion fronts for the unbi-
ased cas¢9] asF—0 and for the directed cad@9] asF
—oo, Here, as for other results below, we have given two
equivalent forms for the diffusion front: the first one with the
integral is more appropriate to study the snfalbehavior,
whereas the second one with the infinite series is more suited
for largeF.

The simple property

Jo(—X,F)=e" FXgo(X,F) (79

is actually expected to be valid for arbitrapgy as a conse-
quence of a nonlinear fluctuation theorem, as discussed in
Ref. [23].

C. Disorder averaged mean position

The disorder average of the mean position takes the scal-
ing form

(x(t,H))= 2 xPux,H=&t 1, (F=pretm),
(80)

where the scaling functiot’, reads at lowest order i
—0

XO(F)EJ’j:dXXgo(X,F)

FA

—coth— 1

j d\he” )‘—
= Lty 1+ ! 81
=1-= Elﬂ £l (81
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The series expansion for sméllreads
3 5

F
XO(F)=E—E+E+O(F7), (82

whereas the asymptotic behavior for lafgeeads

+ oo

1 2
Xo(F)=1—=+> ———
oF=TE nzl(lJan)3

1 243 = o 1
TFTRE g Cles)

(83

Using F=pf&(t,f) and Egs.(59) and (60), we finally
obtain the expansions

- pf[t (14 ) 1 i t | 20/(L+p)
<X(t,f)>=7(1——o) 1-3(80) (T_o)
+O((BftH 1T 1)%) (84)
at short times, i.e., for<t,(f) (55), and
(x(t f))—(ﬂ—f Mt“—— O(;) 85)
2] Bt T (g2

for t>t,(f). The leading terms are thus in agreement with

the scaling analysis presented in Ref2].

D. Thermal width

The disorder averaged thermal wid(f4) presents the

scaling form
) + 2
(A= 2 X*Px.H—| X XPt(x,f)}
X=— X=—
=£4(t,H)A L (F= Bt 1), (86)
where the scaling function reads at lowest ordepin
FA
aoF)= [ o RN O S
ol F)= |, dhe Tgy| cothy m 5
sinkP —
2
j— 1 2 " 1 1 1 " 1 1 8
_E+;¢ +E +Elﬂ +E. (7)

It is thus directly related to the scaling functidf(F) gov-
erning the mean displacemei®l) via the simple relation

1

JE| (P (88

Using the asymptotic behaviors for small and laFge

PHYSICAL REVIEW E69, 026103 (2004

AO(F)=1—§F2+F4+O(F6), (89
1 4¢3 = 1
Ao(F)=g - R o e (90)

with F=Bf&(t,f) [(59) and (60)], we obtain the following
leading terms for the unrescaled thermal width

5 2ul(1+ ) ) t 2ul(1+ )
M) = 1-S(BD) T—O)
+O((Bf) A+ m) (91
for t<t,(f) (55), and
f M
W—(%) tﬂ{l— 44(3)
()= 5 (B e
1
“\ianir 2

for t>t,(f).

E. Mean square displacement

In addition to the thermal widtk86), it is also interesting
to consider separately the two terms, namely, the mean
square displacement

Do(F)=(X?)
:2_E+£+£¢" 1+£
F g2 FE4 F
F2 F4
=1+?—?+O(F6) (93)

and the square of the mean displacement

4F4
=F2- ?+O(FG)

(94)

1 mn l+1

in the rescaled variabl¥=x/£(t,f) as usual.

F. Localization parameters

The localization parameters, defined as the disorder aver-
ages of the probabilities to finklindependent particle in the
same trap, follow the scaling form

v h= X PO =Y F=pren),
(95

where the scaling function at lowest ordernreads(74)

026103-8
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—+ oo + _
y(k°>(|:)zfo dA*JO dr e M A

1—e P |
X + 1—e FOATHrT)

1—e FOATHA)

e_F)\(l_e_F)\+):|k

1
+oo kF(—+m I'(k+m)
F
:mzzo 1
FI'(1+mI'| 1+ E+k+m

1 . 1
1+Fm 1+F(k+m)

X . (96)

The series expansion for sméllgives the first correction

with respect to the unbiased cd€g
2k(k—1)
(k+1)(k+2)(k+3)

2k(k—1)(k?®—15k—4)
(k+1)(k+2)(k+3)(k+4)(k+5)

+O(F9),

Y(F)= F?

kel

+F*

97)

whereas for largd-, the first corrections with the directed

case[29] read
(0) —1— L
Vi (F)=1—[veuert w(k)]E

[ Yeuler™ l/f(k)]z m? ,
+(f+7_§‘” ()=
1
E .

Fork=2 andk= 3, we may moreover sum the ser{@&$)
to obtain

(98)

OF)=1- 2+ 22 yl1s 99
yz ( )_ [= F2 FS F ( )
OF)=1- >+ >3 (142 100
VP =1-5e+ 5 =| (00
which are thus related by the very simple relation
1-YF)  1-YPUF)
5 = 3 . (107

This relation actually reflects the tw®-structure of the dif-
fusion front in any given sample: indeed, if we nqtg and
p, the weights of the twas peaks withp;+p,=1, it is
immediate to obtain the relatiofd01) since

1- Y= (p;+p,)2—pZ—p3=2p;p,,

PHYSICAL REVIEW E 69, 026103 (2004

1-YQ=(p,+p2)3—p5— p3=3p1P2(P1+ P2) =3p1p,.
(102

G. Entropy

The entropy(1l) is closely related to the localization pa-
rameters95) since it reads

+ oo

S(tH== 2 P)InP(x)

aY{M(t,f)
ok

k=1
=SW(F=pBf&t,1)), (103

where the scaling function reads at lowest ordegin

1
¢ 1+E + o0 1 1
SOF)= ———+ —
F2 m=0 \ (L+F+Fm)? (14+Fm)?
1
X|p(I+m) =y 1+ z+m||. (104

The asymptotic behaviors are given by the series

SO(F)= 1 _F2 _F4 O(F*® 10
for small F and by
m?  3{(3) 1
(0) = _ 27 -
SWUF) = 2 +0 3 (106

for large F. So for the unbiased cade=0, the entropy re-
mains forever frozen at the val&®(F=0)=1/2. For the
biased case, the entropy decays towards zero as the directed
character gets stronger as time grows.

H. Two-particle correlation function
The two-particle correlation function reads

+ o + oo

Clliy= X 2 PUOP(X)8 x|

X==% y/=—_

~ Y0y, +ic ()\zl—) (107)
2 O gt ) Tt

t—w

where the weight of theé peak corresponds as it should to
the localization parametefy”) discussed above, whereas the
scaling function of the long-ranged part reads at lowest order

L 1—2F e Pr -2

Co()\,l:)267 F(l_e_F)\)z

(108
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In particular, the first correction with respect to the unbi-
ased case read9] a(t,tw,f)Z( n for ty<t—t,<t,(f)
w
F2)2 (113
+O(F\%|. (109

_tw) ml(1+ )

N
(0) —aN_|1_
C,/(\F)=e 1

3 30
VI. EFFECTIVE DYNAMICS WHEN THE FIELD f IS 'B—f(t—t ) #
APPLIED FOR t=t,, 2 W
) . ) ) ) a(t,tw,f)= RVCETS I for t—tw>tﬂ(f).
We now study the dynamics in the following aging “ex- t

periment” already considered in Re22]: the system first (114
evolves with no external field=0 during the intervalt
e[0t,], and then an external fiel>0 is applied fort
elty,+o].

On the other hand, for,>t,(f), the the time sectow
>1 corresponds to the domain-t,,)>(2/8f) t\}vl“”, and
we have Eq(114) in the whole time sectow>1.

To simplify the reading in the following, we will use the

simplified notations
The scale of the renormalized landscape corresponding to

A. Time sector governed by the effective dynamics

time t,, and to no external field=0 reads(54) R=R(t-t,,,f),
t U(1+p) = =
R(t,,f=0)= —W) (110 Rw=R(ty,f=0),
To
RM
The corresponding length scale between renormalized traps a=a(t,t,,f)= . (115
is given by (59) R
(1+ )
&t f=0)= (t_W) e (112 C. Statistical properties of the _renormalized landscape at two
To successive scales

peaks(74), has to be considered as an initial condition for the probability measure for the renormalized landscape at the
ping time 7>R(t,,f=0), the effective dynamics corre- &lone. The joint probability that the first renormalized trap at
sponds to no move as long Bét—t,,,f) <R(t,.0), whereas SCaleR,, is at distance,, , has a trapping time,, and that

the effective dynamics governed by the decimation procethe first renormalized trap at sceffeis at distancé ™ reads
dure becomes “active” foR(t—t,,,f)>R(t,,,f=0). As a

it i ' Ar R(Ty lyil™)
consequence, it is useful to introduce the parameter w R fw o tw
t—ty,f)  RA(t—t,,f P M —1 IR
a’(t,tw,f)E f( w ) _ ( w ) (112) —G(TW>RW) " 1+Me w!Pw
&tw.f=0) R, f=0) (Tw)

that measures the ratio of the length scales of renormalized
landscape at the two scalB¢t —t,,,f) andR(t,,,f=0). The
response in the time sectar< 1, which is governed by rare
events will be discussed separately in the Sec. IX. In this N i C(—1EyRE
section, we will concentrate on the time secteft,t,,,f) +6(7y, <R) (1 >|w)@e W
>1, where the effective dynamics governed by the decima-

tion procedure is the leading effect. (119

x| 6(r>R)8(17—1])

After integration over the trapping time,, , we obtain the

B. Role of the characteristic timet,(f) associated to the .
scaling form

external field
We have already seen that a bfastroduces the charac- . . I
teristic time scalé,, (f)=(1/8f)** /% (55). Itis thus natu- AR, R(lw ] )EJ dryAr, R(Tw lwil)
ral that the domain int(-t,) corresponding to the time sec-

tor >1 actually depends on the relative valuetgfwith 1 P P Rt I RH

respect tat ,(f). _ T ReRe W=@.7\ = Thr e
For t,,<t,(f), the time sectow>1 corresponds to the w w w

domain ¢—t,)>t,,, and the ratiax interpolates between (117
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We are now in position to compute various observables in
the aging regime from the knowledge of the sample-
1 . o dependent two-time diffusion frorif.22) and from the mea-
1- - O(N">0)e - sure(120) over the samples.

(1189

with the scaling function

ANy N5 a)=

1
e M ~s0 )+

VIl. OBSERVABLES WHEN THE FIELD f IS APPLIED

Since we have the same properties for the half lne FOR t=t,,
<0, the measure for the full line reads A. Disorder averaged two-time diffusion front
Fy =y Fey - The disorder averaged diffusion front with the measure
A Ay AN a) (120 reads
_ + - Ay -
=0y >0)0(A>0)e twtw PO(X,,Y,F,a)
1 1 N
x| = 4 _ = + -\ + oo + oo _ +
— 50+ 1 a) 60\ >0)e } =[ T | e e
0 0 0
15 - 1 - - .
X|Z0A)+| 1=~ oA~ >0)e" |. xf AN AN A AT a)
0
(119 o
,P{)\ )\ )\vJ\r/‘)\+}(XW,Y,F,a)
D. Rules for the two-time effective dynamics ~[6(X,=0) 0(Y>O)+e*F|Y‘ B(X,,<0)0(Y=<0)]
Given the configuration~,\,, ,\,, ,A ") characterizing (0)
the renormalized landscape at the two successive scales, the LUXWLIYLF @) +[6(X,=<0)6(Y=0)
two-time diffusion front takes the scaling form +e FIYIg(X,=0)0(Y=0)1g (|X, | Y|.F.a),
P(X,t; Xy ,tw]0,0 (122
1 Pk . where
wpp’ ANTAL AL ATY
RIR ; g0 (X, Y. F )
Xw X=Xy # 1 _
X| Xw=7,,Y= vl ,012@) =e X — ~ o)+ 1——) f dr, e tw
W ‘W
(120) )\;v (1) l_eiF(xWJr)\ViV/a)
with KXot Ay |\ @) 1—e FOHXuthyla)
(0) 1 +oo - 1_efF(>\‘+xW+>\;/a)
P~ Ay AL ,A*}(XW'Y'F’O‘) +(1——>f dr"e — -
o 0 l_e*F(YJr)\ Jr)(WJr)\W/Cl/)
Ny AN
:v—w_ﬁ(xw_)\;\;) W+<)\+,}\+ w W,F) (123
W and
Ay + Ny
XS(Y=N)+W_ A*,A+M,F) 9% (X, Y,F,a)
_ 1\ [+ o l-e ™
Ay A Ay, =eXW(1——)f d\e™t ——
X8| Y+N + ——= +)\+ i 5(x +Ay) a) Jo 1—e F(Y+1)
_ » A, [1 Ay +X
Nt Ay for dhfew — —5(Y— L=
XIWo| N+ —=——= ,F) o " N +X,le a
o\ 1 Ay +X
ol yonr M hw + 1——) G(Y—W—W e (Y Ay Xula) |
a o o
A+ Ay ) (124
+ - +N)|. ;
W- Flo(y+a7))|. (121 The form(122) presents the simple property
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PO=X,, —Y,F,a)=e FYPO(X,,Y,F,a) (125

which is expected to be true for arbitragy, as a conse-
guence of the nonlinear fluctuation theorem discussed in Ref.

[23].

B. Law of the relative displacementY betweent,, and t

PHYSICAL REVIEW E69, 026103 (2004

H
(a+Fn)(atF+Fn)|

(131)

X(2—e (1Y) —

The presence of a singular part &¢Y) for the rescaled
relative displacement was already found in the case of the
Sinai model by the RSRG approaf®6] and by mathemati-

We now consider the partial law of the rescaled relativecians[35]. Here the weight oB(Y) is simply given by (1)
displacementy betweent,, andt, i.e., we integrate the dis- (112 which represents the probability for a renormalized

order averaged diffusion frorifl22) over the positionX,, at
time t,,: we obtain the form

+ oo
P(O)(Y,F,a)EJ dX,PO(X,,,Y,F,a)=[6(Y=0)

+e FVlg(Y=<0)]G(Y,F,a), (126)

where
+ o0 0
GOY.Fu)= | XG0 (XYL, )

+9 (|Xul.| Y.F, )] (127

Using the intermediate results

+ oo
f dX%,g (X, Y, F,a)
0

_ 1l _wad 1-e ™
=5 (Y)+ Ee o UW
xX[e"'—e Y] (128

and

+oo 1 +o
dXWg(_O)+(|XW|,|Y|,F,a)=E(e’Y—e’“Y)J' due ™"
0 0

1-e Fu
X oy (129
we finally obtain
- 1
POY.F,a) = 5(Y) +[0(Y=0)
+e FVlg(Y=0)1G,q(| Y|.F.a),
(130

where the nonsingular part is given in terms of the function

e*Y 4o 1_e*Fu
GnS(Y’F’a):Tfo dUm
X[(z_ef(afl)Y)efu_efszUJ

+ o

H
=67YZ e~ FnY
n=0

(1+Fn)(1+F+Fn)

trap at scal€(f=0,,) to be still present in the renormalized
landscape at the new scaéf,t—t,,).

C. Disorder averaged mean position

Since(x,,)=0 in any sample, in the effective dynamics in
the limit x— 0 but also more generally for any as a con-
sequence of a special dynamical symmd®g], the mean
position (x) at timet in a sample also corresponds to the
mean displacemen(x—x,,)) between the times, andt.

The disorder average of the mean position takes the scaling
form the scaling form

n
F=BfR:, a= 5) . (132

W

()(tty, [ =RAX,

where the scaling function is simply given in terms of the
law of the relative displacemeit (130

1 [+ v
XO(F,a)=§JO dv deYYe*Y(l—e*FY)

1_e—FU

X(l— eFY—Fv)[(Z_ e—(a—l)Y)eY—v_ an—av]

L1 o1 1y 1 1
lET Y F/ 2a 242
1 1

_|_ —
2(a—1+F) 242%(a—1-F)

1
* (a—1)((a—1)2—F2)["D (1+ E)

1+ =
E

— . (133

We now consider various limit expressions.
On one hand, for fixedr, the asymptotic expressions for
small F and largeF which generaliz€82) and (83) read

Xo(F,a)= 1—12 g—% —is F3
a a
+1 1—l<i+i+i) F°+O(F’)
6 ) C!s C!4 as
(139
and
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Xo(Fra)=| 1- = o P + ! 142 139
o= 175" 22 T2\ T F Fa-v2 ) TR 09
1 111 1 For fixed a, the asymptotic expressions for smajland
—~la-1-—+=|=+0( =]|. .
2 a2 E2? F3 large F respectively, read
(139 SR S E S S SR o) o
On the other hand, for fixeH, we have at the beginning oF,@)= T 213222 3.0 24
of the aging regime wherea(— 1) is small
N 1+ 1 1 2 1 1
s 1.1 /.1 3 ' e 2 £3 .4 £ 5 @6
Xo(F,a)=(a—1) E_E_;_El/, 1+E 3 6a? 5a4° 5a* 54° 6a
X F4+O(F®) (140
+0((a—1)?), (136)
and
whereas for largey, the first corrections with respect to the
previous result81) corresponding tax—« read O 1 1 ) 1 1+ , 1\ 1
e L L1 F RS L e =
olFLa)=1-¢ Elﬁ Fl 522 .
+0O| — 141
+ F+F2+ ’1+l +0 ! R -
2 TE O e

For fixedF, we have at the beginning of the aging regime,
(137 where @—1)

D. Mean-square displacement during[t,, ,t] 3 2 1 1
Similarly, the mean-square displacement duriig,t] Do(Fi)=| 4= ¢+ = Ew 1+ g)|(e=D)
takes the scaling form
+0((@—1)3), (142

- R
D(t,tw)=<[x(t)—x(tw)]2)=RZ"DM< F=BfR",a= _,L) whereas for larger, we obtain the first corrections to the
(Mi38) previous result93)

where the scaling function is again obtained from the law of

2 2 1
the relative displacement (130) Do(F.a)=[ 2=+ o+ |1t g
+oo e*Y +oo l_e*Fu
D(F,a)=f dYY2[1+e’FY]—f du———— R S N
0 0 2 1—e F(Y+u) + F+F2¢// 1+F e
X[(z_ef(afl)Y)efu_efau:I 4 1
2 2 1 1 1 M =LA
=2-—=4—=———=+——-
F 2« 3 a—1+F
i i +2’1+1 1+O1 143
11 L R PR D) B
(a—1+F)? a*(@—1-F)?
1 A( 1) E. Thermal width
a—
- Na—1-F) + F(a-17—F?) The rescaled thermal width
a \a— L1L— o — -
1 N A (F,a)=(X*—(X)? (144
Jufae 2 -ufae
F F may be similarly computed, but since the full expression is
2(a—1)2—F2 1 rather lengthy, we will only give the asymptotic forms.
@ 911"( _) For fixed «, the asymptotic expressions for smglland
F'(a—1)*-F?) F

largeF, respectively, read
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A. Caset,<t,(f)

2 1 1
Ao(F,a)=1+| — 3t 33,8 F? For t,<t,(f), we obtain from Eqgs(134) and (113 the
behavior in the sectdrw<t—tw<tﬂ(f):
5 4 2 2pul(1+p)
4 4 g4 6 t yn %
W
(145 (149
and and from Eqs(135 and(114) the behavior at long times
—ty>1,(f):
A (F ) 1 n 1 n 1 n 2 2 1 o ,Bf n t‘:}v/(ler,) n
1a =5 5 3 A - Al = = | — _ —_——_— ———-
0 3a 3a,2 3(13 3 3a3 F <X>(t1tW!f) ( 2 ) (t tW)ILL|:1 2(ﬂf/2(t_tw))
a 1 5 5 1 1 thArw 2
+|=—=—— —+0| —]. o= .
6 6 6a? 6a3F? O|F3 Z(Bf/Z(t—tw)) (10

(146 Moreover, at the beginning of the effective dynamics re-

gime a—1 (113, the expression&l34) and(136) coincide
For fixed F, at the beginning of the aging regime where gnq give

(a—1) is small, we have

_ " t—t, wl(1+p)
2 1 (X)(tty,f) = gty ( t ) _1},
Ao(F,@)=1+| -2+ —————¢"| 1+ = t=ty—ty w
oFx) F 3r2 35’ ( F) (151)
T ) whereas asymptotically whesa— o (114), the expressions
—ﬁlﬂ 1+ =] |[(a—1)+O((a—1)9), (135 and (137 give

14 f\#
e xh) = (%) (t-t)* (152
ol 2 e
whereas for largey, we obtain the first corrections to the e gt
previous result87)
B. Caset,>t,(f)
Fort,>t,(f), the time sectow>1 (114 implies thatt
a3 —t,>t,(f) and we obtain from Eqs(135 and (114 the
behavior at long times in time sectort, >t (f) andt

1 2 (1
AO(F,a’)ZE'FElﬁ 1+E

10 10 1 1 2
2_ "3, " " n = _ —t >_tl/(1+u)
BRI g P /| 14 ]| 5+ 0| w> g tw
(148 — £\~ N e
<X>(t,tw,f)= % (t=ty)* 1_5 EW
For the case,,=0, corresponding tex=0o> we have pre- ?(t tw)

viously found a very simple relatiof88) between the two
scaling functions describing the mean position and the ther- 1 tiarw o 2m
mal width. Here, in the aging casg>0 with finite «, there 2|8t : (153
does not seem to exist a simple generalization of (B§). > —(t—ty)

VIIl. VARIOUS REGIMES FOR THE RESPONSE IN THE Here at the beginning of the aging reginte-t,

LIMIT u—0 — (2/Bf) tY¥¥ 2 the expressionsl35) and (136) coincide

In this section, we translate our results for the disorde@nd give
averaged mean positidii132) and (133)] into the original "
unrescaled quantities, using the definitions For Bf £(t,f) Bf

and fora(t,t,,,f) (112. We have to distinguish various re- — 3 (14 ) 2 (t=tw)

gimes, according to the relative values of the times,[ (0 (ttw,f) = 7t ,[1/(1—+m -1
and of the characteristic time scalg(f) (55) associated to t*twﬂ[%rtvlv’(““) w

the forcef. (154
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whereas at at the end of the aging regime:~ (114), the  obtained that the probability&’;)(r) to be att,, in a trap of
expression$135 and(137) again give expressiofi52). trapping timer was given in the domain<R,, at first order
in u by

C. Discussion 3/2 R R
. . . P (1) 0(T<Ry)=p —=Kq| \/—|Ky| \/—
The results of this section, that rely on the effective dy- Rw w) =M 52t r/ 2 T
namics picture, are valid at lowest order in the high disorder (155
limit ©x—0, and in the asymptotic aging regime where the .
two times are bigt—o, t,—o, with the parameter Where we have dropped numerical factors of ordefwe
a(t,t,,,f)>1 (112 being fixed. We have found various in- fefer the reader to Ref9] for precise results In particular,
teresting behaviors depending on the relative values of thliS Probability presents an essential singularity at the origin
parameterst(t,,,f). Whenever they can be compared, our R
results agree with the scaling analysis presented in[R&}. () ( ) W a2 R, Tr
. . . . l//R (T) THOIu‘ e L
In the following section, we discuss the behavior of the re- w '
sponse in the time secter<1, which is governed by rare ) L . )
which means that it is very unlikely for the particle to be

events.

trapped at,, in the biggest trafs contained in the interval
IM_ M, [ if the trapping timer of Sis much smaller than
Rw

(156)

IX. RESPONSE IN THE TIME SECTOR af(t,t,,,f)<1

FROM RARE EVENTS As a consequence, the integrated probability up to fRale

As explained before, in the time sectar(t,t,,f)<1  (With R<R,):
(112, the effective dynamics governed by the decimation R e
procedure gives no contribution, and the response will thus f dryh (T)N'“J’ dzZK,(2)Kx(2) (157
be governed by rare events. A similar situation was already v Wa
found in the RSRG studies on the Sinai mof®6] and and ¢ i5 of orderu whena~1, will also present an essential
on the out-of-equilibrium dynamics of the random field Ising singularity for smalla=R/R,,:
model[28].

R 1 -
[ arit (-uon e BT ass
o

A. Description of the rare events

For the trap model considered here, the “rare events” that
are responsible for the response in the time sector
a(t,t,,f)<1, can be described as follows: the particle, 1. Probability to be doing an unsuccessful excursion af t
which is assumed to be trapped in a renormalized trap
>R(t,,0) at timet,, in the effective dynamics, has actually a
small probability to be at,, in a “small” trap, i.e., an already
decimated trap<R(t,,,0), for two reasons.

(i) Wheny is small but finite, the particle can be found at

C. Probability to be doing an excursion att,,

From the discussion on unsuccessful excursions, the prob-
ability for a particle to be trapped in the vicinity of a renor-
malized trapry at scaleR, with neighbors at distancds.
reads when the external field vanishi&d)

time t,, in a trap <R, with a probability of orderu, as tour lo+1_

explained in Ref[9], where the corrections in with respect PR (7,1 N )= e (159
to the effective dynamics of the unbiased trap model were n 0

studied in details. After the average over, with the measurél4) and over the

(i) Whent, is large but not infinite, there is a small |angths(13), we obtain that the probability to be doing an
probability that the particle is doing an excursii84) and |, nsuccessful excursion at ting reads(110)
(39)] at timet,, .

In both cases, the particle that happens to be in a small pouty y=pout 7 | =\ )~ yRé~ 1= ytlr=DIA+m

trap att,, will respond to the external field in the time sector w (160
a<l.
As expected, the probability of these rare events is very
B. Correction of order p to the effective dynamics small whent,, is large sinceu<<1. In addition, there is a
prefactoru that makes this probability even smaller in the

In the previous study on the unbiased trap md@g¢l we
have studied in details the first corrections at ordetio the
effective dynamics. In particular, we have shown that in the
asymptotic time regime, the particle can be found with a
probability of orderu in the biggest trajs contained in the The particle may be in a successful excursion,gtif it
interval IM_,M [ between the two renormalized traps belongs to a renormalized trap that gets decimated around
around the origin at scalR(t,,,f=0). In particular, we have the scaleR,. From the discussion on successful excursions,

limit u—0.

2. Probability to be doing a successful excursion gt t
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the diffusion time for a length~ R/, reads when the external — R -
field vanishes read<A22) and (A24)] (<X>)rare(tutw-f):j drgr (7)((X)A(t,ty, )
|2 ) R
tairr(F=00) = ~R". (161 =RX,(F=pfR") j dryid(7)
This time window of width Qt),,~ Rfvf‘~t_§v"“’(1+”) around n JRdﬂpﬁf = (167)
ty corresponds in RG scale to a window aroufRy, w

~t/ 07 of width AR, ~t, /(A ~tf/ "M Asa — i it
consequence, the probability to be doing a successful excukSing the estimations of the integrated probabilities found
sion att,, can be obtained from the probability to be in a trap before[(158) and(165)], we finally obtain that the contribu-

~R,, (14) times the window width just estimated tion of excursions dominate for small<e,,, whereas the
_ contribution of the corrections ip to the effective dynamics
PU(t,)~0r (RyAR,~t# V/A*w (162  are dominant fore,<a<1. The scale of the crossover
W

value «,, can be estimated from the equality between Egs.
The probability is again very small as expected, and happend58) and (165 at leading order
to have exactly the same scale(as0).

1
(INRy)?’

3. Probability to be in a small trapr during an excursion g~

(168

For a particle doing an excursion, we are now interested
: L exc ) L
into the prObab'“tyl’/lRw(T) to be in a trap of trapping time In conclusion, before the response of the effective dynam-

7. We have obtained above that the total probability to be in¢cs in the sectorr> 1 given in Eqs(149), (150, and(153),
a small trapr<R, behaves as there exists a response in the seaisr1 as a consequence
R of rare events. For very smalt<a,,, the response comes
f WdTl//EXC(T)NMt\(Nﬂil)/(lJrM)N/J“R\':Lvil- (163  from the particles doing excursions in anomalously small
v traps att,,, and it is reduced by a very small prefactor of
order ptZ DI+t —t YA-w/(kt1) (165, On the other
hand, fora,<a<1, the response is governed by particles
which are “in delay” with respect to the effective dynamics,
as a consequence @f being finite, and the response is re-
duced by only a factor ofe.

Assuming that the dependence @ECIC(T) in 7 is given by

7q(7), i.e., the initial distribution(6) weighed by the trap-
ping time 7 (i.e., the particle spends in each trap a time
proportional to its trapping timewe obtain the estimation

M
YR )~ RE* 1)7 O(T<Ry), (164 X. DISCUSSION OF THE FLUCTUATION-DISSIPATION
T RELATION

which is rather flat for smalju—0, in contrast with Eq. A. Linear response regime in a given sample in the effective
(156). In particular, the integrated probability up to scéle dynamics time sector

(with R<R,) reads From the diffusion fron{121) in a given sample charac-

R terized by & ", A_ ,\",\_), we obtain at lowest order iR
f drySS () ~R2W DRI k=R"Dgal-# (165  the following results for the rescaled mean position
W

<X>(t1tW if)
b. Contributi ———=(Y)(a,F)
. Contribution to the response of these rare events &t—t,,f)
When the initial condition at,, is a small trap of trapping AAT ATACHNTNT
time 7, the effective dynamics will become active again = + . F+O(F?)
whenR(f,t—t,) reachesr, i.e., whena reachesr/R,<1, 2 2a
and the corresponding contribution to the response reads (169

(N Attw, F)=0(R>7)RAG(F=BFR*), (166  4ng the rescaled mean-square displacement

where the conditiord(R>7) means that the trap has been Bt L f
decimated at scalg, and thus the response is given in terms (X~ Xw) ) (ttw, ) —(Y?)(a,F)

of the scaling function(81) found before for the casg, E(t—ty,,f)

=0. Averaging overr with the total probability /s (7) A AN
=¢<Rf;>(7)+ Y&(7) coming from the two kinds of rare v R o).
events described above, we obtain the leading term of the @

response in the sectar=R/R,<1 as (170
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So the Fluctuation-Dissipation TheordfDT) or Einstein’s (Ot tw, F) Bf
relation is valid in the whole time sectar>1 as long as the 2=W) == (175
linear response is valid and reads in unrescaled quantities (AXA(t,ty, ) /-0

with F= Bf&(t—t,,,f),
As a comparison, in the pure trap model, it is immediate
Bf ) to obtain the equations for the mean displacement
(bt F) = S ((x=%w) ) (410, 0). (A7) (d(n)pyre/dt=2sinh(Bf/2) and for the thermal width
=0 d(An<),,re/dt=2 coshf3f/2) so that their ratio is simply

This is in agreement with the scaling arguments and numeri-
cal simulations presented in R¢22] and with the nonlinear
fluctuation theorem discussed in RE23], that proves that (Anz)pure(t)
the FDT relation is valid in any given sample for arbitrary

The validity of the FDT relation for the trap model in its for arbitrary time, in the regime of small asymmetry we are
aging phase is nevertheless quite remarkable, since the dipterested in Eq(10).
namics is completely out-of-equilibrium: indeed, in the ef-
fective dynamics, the weights of the two important traps are X|. CONCLUSION
not given by Boltzmann factors, they do not even depend on
the energies of these two traps, but they are given by the We have studied in details the dynamics of the one-
probabilities to reach one before the other one, and theyimensional disordered trap model when an external force is
thus, only depend on the distances to the origin. This exapplied from the very beginning at=0, or only after a
ample, with the explicit expressions in a given sanjpl&9  waiting timet,,, in the linear as well as in the nonlinear
and (170)], thus shows that the validity of the FDT relation response regime. Using a disorder-dependent real-space

in the linear response regime does not imply that the systeffenormalization procedure that becomes exact in the limit of
is at equilibrium or even near equilibrium. strong disorderu—0, we have shown that the diffusion

front in each sample consists in twpeaks, which are com-
pletely out of equilibrium with each other, since their
] . ) weights represent the probabilities to reach one before the
In the asymptotic aging secter—o, which also corre-  iher one. The statistics of the positions and weights of these
sponds to th_e case where the external field is applied frony peaks over the samples was then used to obtain explicit
the very beginning,,=0, we have found a very simple re- resyits for many observables, such as the diffusion front, the
lation (88) between the scaling functions for the mean dis-mean position, the thermal width, the localization param-
placement and the thermal width which is valid for arbitrary eters, and the two-particle correlation function. Since the
F and in particular in the whole nonlinear response regimerenormalization procedure is defined sample by sample, our
However, this relation found for disorder averaged quantitie%pproach provides a very clear insight into the important
does not seem to have a simple interpretation, since in 8ynamical processes.
given by Eq.(74) field have been mainly restricted to the linear response re-
- - eyt ime[17,18, which holds for fixed timest(, ,t) in the limit
(x(t,f)) A"(1-e M)ave ™ d-e ™) cg)f vanishing fieldf —0. However, as in th(ve t)rap model dis-
&(t,f) 1—e FOT+A) cussed here, it should be expected in a broad class of aging
172 systems that, for a fixed small fielg the validity of the
linear response regime is limited in the time sector fqr,f)

M:tanhﬁ%f: %f (179

B. Nonlinear response in the asymptotic aging sectog— o

(AXA(t,F)) L Ze‘FV(l—e‘Fv)(l—e‘F”f) by a characteristic time(f) depending on the external field.
2—=()\ +A7) RO 2 Indeed, it seems rather natural that an external field, even if it
(1) (1-e ) is arbitrarily small, will, for sufficiently long times, drive the

173 system into a configurational landscape which is completely

different from the initial one. So in the asymptotic time re-
ime beyond the characteristic scald), the response will
Iways be governed by nonlinear effects. For the special case
w=0, the full response including these nonlinear effects has
already been studied for the Sinai mofi26] as well as in
the coarsening dynamics of the random field Ising model
{x}(t—tf) [28], via the_RSRG approach: in both cases, as in the trap
Iim(’—w') = Bf, (174  model, the field introduces a characteristic time separating
1o\ (AX2(L, 1, T)) the linear response regime from a nontrivial aging regime
with nonlinear effects. This scenario should more generally
whereas, for comparison, there is a factor (1/2) in the FDTapply to other coarsening dynamics. However, in numerical
relation of the linear response regirflerl) studies on domain growth processes, to get better results for

Moreover, we have not found an equivalent relation when
is finite (144). Nevertheless, after the average over theY
samples, we have obtained the following simple property a
very long times in the aging regime—co (114), i.e., in the
nonlinear response reginié35) and (92)]
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the linear response regime at large times, it is usually thén terms of the roots
response to a random field that is measUR#&]37], and not

the response to a constant field, that would favor one of the 2+ s+ \/s2+ 4s+ 4h2
phase and induces nonlinear effects rapidly. Since this choice p+(S)= 2(1+h) . (A5)

of a random field for domain growth processes, is in some
sense the equivalent of a constant field for spin glag3@ls ) o ) i
it seems that the nonlinear response of spin-glasses will b&N€ Series expansion sithen yields the first moments
very different from coarsening systems. For instance, in the )

dynamics of the spherical Sherrington-Kirkpatrig§K) N

spin-glass mod€]38], the magnetic field introduces a char- 0(x)= fo dtP(x). (AG)
acteristic time that separates the aging dynamics of the linear
response regime from an equilibrium dynamics at large
times: here, the magnetic field does not lead at large times to
a nontrivial aging regime with nonlinear effects in the field, Fors=0, the roots becom@ve assumé>0) in terms of
but rather gives rise to an interrupted aging phenomenonhe biasf (8)

However, this scenario is not expected to hold for other spin

glasses such as the usual SK mda@é], if one considers the p+(0)=1 (A7)
number of metastable states in a fig8d]. In conclusion, the

understanding of the nonlinear effects that arise at large —h

times in the response of aging systems is still very incom- p-(0)= m=e_ﬁf (A8)
plete and should give rise to further studies in the future.

1. Escape probabilities

and the probability to reach 0 befofewhen starting ak,
thus, reads

It is a pleasure to thank E. Bertin, J.P. Bouchaud, G.

Biroli, and J.M. Luck for useful discussions. e Bfx_ o= Bfl

Oo(X)=P(s= O)ZW- (A9)
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APPENDIX: STATISTICAL PROPERTIES OF

EXCURSIONS IN THE PRESENCE OF A FIELD . )
a. Escape probability along the drift

To study the exqursions in the renormalized Iandscape in When starting ak= 1, the probability to reach=1 with-
the presence of a field, we have to study the following Stanbut any visit tox=0 reads
dard problem: what is the probability distributid?(x) of
the timet of the first passage at=0 without having touched
the other boundary=1 before, for a pure random walk start-
ing atx with the asymmetnh=h(f)>0 (8)?
Forx=1,...]|—1, the probability distributiodP,(x) sat-
isfies the equation

1-e Pt

pe(l,f)=1- 00(X=1)=1—,-

— (A10)

Here we are interested in the regifdé<1 andl>1, where

dtPt(x)=(1+h)Px_1(t)+(1—h)PX+1(t)—2Pt(x)( the escape probability takes the scaling form

1
with the boundary conditionBy(t) = 5(t) andP,(t)=0. So pe (11)= T E"(u=p1l) (A1)
the Laplace transform with respecttto

A o with the scaling function
Px(s)zfO dte S'Py(x) (A2)
u

E*(u)= .
(W 1-e™"

satisfies (A12)

(1+h)Pyi1(S)+(1—h)P,_1(S)— (2+5)Py(s)=0

(A3) In particular, E*(u—0)—1 corresponds to the unbiased

case where the escape probability is simply I the other
B . A _ limit where u=— +, we haveE™ (u)=u and the escape
for Xfl’ - -1 =1 with the boundary conditionBo(s) =1 probability becomesgf), i.e., it is proportional to the drift
andP,(s)=0. and independent df
The solution reads

b. Escape probability against the drift

| X | X
S)pZ(s)—p_(s s
P+(9)p-(8)—p ()P (9) (A4) When starting ak=1—1, the probability to escape to 0

ISX(S) =
p'(s)=pl(s) without without any visit tox=1 reads
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1_e—,8f e—ﬁf(l—l) 1 u2
( 1_e)_ﬁf| ’ (A].S) @(U): § - %‘l— O(U4) (Alg)

pe (1,F)=6p(x=1—1)=

which varies as it should betweg (I,f—0)=1/ for the for the unbiased case, where the mean timd/3)( and

unbiased case ang, (I,f—1)=0 for the directed case. In

1
the regimeBf<1 andl>1, the escape probability takes the O(U)=_0— (A20)
scaling form u
1 where the mean time is 14().
p;(l,f):I—E‘(u=,8fI) (A14)
b. Unsuccessful excursion against the drift
with the scaling function The unsuccessful excursions against the drift have the
same properties
B (w=27 (A15) Oud F.1)=054(F1). (A21)
In particular, E"(u—0)—1 corresponds to the unbiased 3. Mean time for the successful excursions

case where the escape probability is simply Iri the other
limit where u— +, we haveE™ (u)=ue " and the escape
probability becomes exponentially smp[l (I,f)=gfe £

Similarly, we find that the mean time needed to reach
=] when starting ak=1 for a random walk conditioned not
to visit x=0 takes the scaling form

2. Mean time for unsuccessful excursions + 2
. . . . tgirs(F,1)=1"D(u= gfl), (A22)
The expansion at first order imof Eq. (A4) yields Eq.
(A6) the mean time to reach 0 without any visitte:| when  where the scaling function
starting atx:
u—2+(u+2)e Y
D(u)= 5 (A23)
us(l—e™Y)

1+e A x(e P4 e ATy e All(1—e B

1-e A1 2(1-e#" (1-e A2 .
(Ale)  interpolates between

01(x)=

_1 2
a. Unsuccessful excursion along the drift D(u)=5+0(u%) (A24)

Forx=1, in the limit 3gf <1 andl>1, the mean time of for the unbiased case, where the mean diffusion time is
unsuccessful excursions along the drift takes the scaling|?/6), and
form

bo(f.h)=6:x=1)=10(u=pf),  (A17) D(U)=; +0

1
E , (A25)

where the scaling function
where the mean diffusion time I$(3f).

1-2ue Y—e 2 Similarly, we find that the mean time for a successful
O(u)= —u(l—e‘“)z (A18)  excursion against the drift has the same properties
interpolates between taire(F,1) =tgise(f,1). (A26)
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